Esteslowery1637

Z Iurium Wiki

Charring extent and PyC content were found to be greater in beetle-impacted boles due to a reduction in bark/cambium resistance to heating and charring, with 80 times more PyC produced in a beetle-killed bark/cambium than in a healthy bark/cambium. Upon scale-up, total PyC production in the fire-affected area was estimated to be 0.71 GgPyC (82.5 kgPyC/ha). This was found to be significantly enhanced compared to an estimated PyC production of 0.036 GgPyC (4.12 kgPyC/ha) in a hypothetical healthy lodgepole pine ecosystem of equal area. The results of this investigation concluded that the 58% beetle-induced mortality in the Badger Creek Fire area resulted in 3 times more carbon released to the global atmosphere, 20 times more PyC retained onsite and 32% greater heat output during wildfire.Pumping experiments were performed in a 2D tank in order to estimate the recovery yield of pure heavy chlorinated organic compounds (DNAPL; dense non-aqueous phase liquids) by varying different parameters permeability of the saturated zone, pumping flow rates, addition of surfactant and heating. Surfactant was added to decrease capillary forces involved in the entrapment of DNAPL in porous media while temperature was increased to reduce DNAPL viscosity (and hence increase its mobility). Chemical enhancement was performed with the addition of Sodium Dodecyl Benzene Sulfonate (SDBS) (at its Critical Micelle Concentration, to avoid DNAPL dissolution) and thermal enhancement was performed at 50 °C (to avoid DNAPL volatilization). The experiments were monitored with photography allowing, on the basis of image interpretation, to convert optical densities (OD) into water saturations (Sw). Image interpretations were compared with modelling results. The two-phase flow modelling was performed with the pressure-pressure to the different operating conditions.Incorporation of phosphorus (P) into an organic matrix may be an effective strategy to increase plant P use efficiency in high P-fixing soils. The objective of this work was to evaluate the effect of biochar-based fertilizers (BBFs), produced from poultry litter (PLB) and coffee husk (CHB) enriched with phosphoric acid and magnesium oxide, in combination with triple superphosphate (TSP) on plant growth and soil P transformations. Treatments were prepared as TSP, CHB, PLB, CHB + TSP [11], CHB + TSP [31], PLB + TSP [11] and PLB + TSP [31]; with numbers in brackets representing the proportion of BBF and TSP on a weight basis. Cultivations were Mombasa grass, maize, and common bean interspersed with fallow periods. After cultivations, a sequential extraction procedure was employed to determine P distribution among different P pools. A kinetic study was performed and revealed that TSP released approximately 90% of total P, and BBFs less than 10% in the first hour. BBF alone or in combination with TSP presented higher or similar biomass yields, relative agronomic effectiveness, and P uptake when compared with TSP. As for the soil, BBFs increased non-labile P fractions, which can be due to pyrophosphate formed during pyrolysis. According to these results, BBFs could totally or partially replace conventional soluble P fertilizers without compromising crop yield either in the short and long-term.Throughout the United States, wildland firefighters respond to wildfires, performing arduous work in remote locations. Wildfire incidents can be an ideal environment for the transmission of infectious diseases, particularly for wildland firefighters who congregate in work and living settings. In this review, we examine how exposure to wildfire smoke can contribute to an increased likelihood of SARS-CoV-2 infection and severity of coronavirus disease (COVID-19). Human exposure to particulate matter (PM), a component of wildfire smoke, has been associated with oxidative stress and inflammatory responses; increasing the likelihood for adverse respiratory symptomology and pathology. In multiple epidemiological studies, wildfire smoke exposure has been associated with acute lower respiratory infections, such as bronchitis and pneumonia. BGB283 Co-occurrence of SARS-CoV-2 infection and wildfire smoke inhalation may present an increased risk for COVID-19 illness in wildland firefighters due to PM based transport of SARS CoV-2 virus and up-regulation of angiotensin-converting enzyme II (ACE-2) (i.e. ACE-2 functions as a trans-membrane receptor, allowing the SARS-CoV-2 virus to gain entry into the epithelial cell). Wildfire smoke exposure may also increase risk for more severe COVID-19 illness such as cytokine release syndrome, hypotension, and acute respiratory distress syndrome (ARDS). Current infection control measures, including social distancing, wearing cloth masks, frequent cleaning and disinfecting of surfaces, frequent hand washing, and daily screening for COVID-19 symptoms are very important measures to reduce infections and severe health outcomes. Exposure to wildfire smoke may introduce additive or even multiplicative risk for SARS-CoV-2 infection and severity of disease in wildland firefighters. Thus, additional mitigative measures may be needed to prevent the co-occurrence of wildfire smoke exposure and SARS-CoV-2 infection.Landfill refuse is a mixture of inorganic minerals and organic matter that is capable of undergoing complexation and redox reactions due to its active functional groups. Organic matter often combines with minerals in landfill refuse and it remains unclear whether this combination involves electron transfer. Therefore, the effects of landfill refuse composition on reductive dechlorination and speciation transformation of heavy metals were investigated in this study. Results show that landfill refuse comprises protein- and humic-like substances, aliphatic structures, and a large number of hydroxyl, carboxyl, quinoid and other active functional group. The electron donating capacity (0.09-0.26 μmol/g(C)) of landfill refuse was found to be higher than its electron accepting capacity (0.03-0.23 μmol/g(C)), indicating that electron donating groups (hydroxyl) were the main redox-active moieties, facilitating the reductive dechlorination of pentachlorophenol (PCP) by microorganism. Fe2O3, FeO and SiO2 were the main inorganic minerals affecting PCP dechlorination. The speciation distribution of heavy metals in landfill refuse was determined by the BCR sequential extraction method. Results showed that Zn and Ni have high potential migration capacity, poor stability and the highest bioavailability, while Cr, Cu and Pb are relatively stable and have weak migration potential. The oxygen- and nitrogen-containing functional groups, aliphatic structures and aromatic carbon in landfill refuse can promote the transformation of Ni and Cr from an unstable to stable state. Protein-like substances exhibit a strong Cu binding ability, allowing Cu to combine with organic matter more easily than other assessed heavy metals. Both Fe2O3 and FeO affected the stability of Cu. FeO promoted the stabilization of Zn, whereas Fe2O3 and SiO2 promoted Cu instability. These results could provide some references for the treatment of organic chlorides and the stabilization of heavy metals in landfill refuse in China.Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.Oil droplets in marine environment interact with particles to form oil particle aggregates (OPA), and alters the transport and fate of oil. We investigated the impact of particles properties on the formation of OPAs. It was found that the distribution of 9 μm spherical silica (sand) particles on the oil droplet was more uniform than the 3 μm silica particles, and it is likely due to the inertia of the larger particles causing them to lodge into the droplet. Also, the OPAs of the 3 μm silica particles were much smaller than those of the 9 μm particles. For kaolinite particles that are rod-like of length around 10 μm, it was found that increasing the hydrophobicity of the particles from a contact angle (CA) of ~ 29o to 38o, increases the penetration of the particles in the oil through a projectile penetration mechanism, whereby the particle possesses sufficient inertia to penetrate into the oil. However, a further increase in hydrophbocitiy (CA ~ 57o) caused the particles to agglomerate together and avoid the oil droplets. The oil droplets got smaller with time probably due to the penetration of the particles in them. For an oil concentration of 500 mg/L, a particle concentration of 100 mg/L was incapable of fragmenting the oil droplets, but particle concentration of 500 mg/L fragmented the droplets similarly to a concentration of 1500 mg/L. This is due to the larger coverage of the droplet surface area by the particles and the subsequent weakening of its structural rigidity through the reduction of the oil-water interfacial tension. The study shows that the fate (e.g., after 24 h) of OPAs greatly depends on the type of sediments where the oil spilled (sand versus clay) and their concentration.This study presents the characteristics and relevance of air quality in the sensitive public environment by analyzing scientific observations and social data detailing the present status of particulate matter (PM) concentrations alongside the changes in the public perception. By projecting time-series data under the same conditions over long periods of time, the difference between the clarity in the information provided by the media and scientific data was quantified, and the patterns in these fields were identified. We confirmed that the PM mass loads in the atmosphere and column concentrations continue to decrease whereas the number of media articles and internet searches with related key words increased over the same period. It was observed that the number of articles in the media increased by 10.5 times over the same period in which the PM mass in the atmosphere decreased by approximately 2.5%. The correlation analysis between the scientific observation data and social data showed significant correlation for the pairs of PM10 and aerosol optical thickness (AOT), meteorological visibility and relative humidity, and media publications with the number of internet portal searches.

Autoři článku: Esteslowery1637 (Dreier Aldridge)