Ernsthatch6581

Z Iurium Wiki

Therefore, our results showed that hypoxanthine inhibited the growth of H. akashiwo through the changes of levels of antioxidants and hemolytic toxin content in the cultures, and fatty acids C184ω3 and C205ω3 were contributors to hemolytic toxins. The results confirmed that hypoxanthine is a potential algal inhibitor to prevent HABs.Silicon (Si) plays a pivotal role in mitigating phytotoxicity caused by cadmium (Cd). However, few former reports focused on the internal mechanism how Si assisted in alleviating Cd stress in rice under different durations of Cd exposure. Herein, the effects of Si on subcellular distribution of Cd in rice roots under short-term (12 h) and long-term (20 d) Cd exposure were explored. Results showed that Si decreased shoot Cd concentration but had little impact on root Cd levels. Under short-term Cd exposure, subcellular distribution analysis showed that Si increased the ratio of Cd in root cell wall by 23.2~24.0%, and decreased the ratio of Cd in root soluble fraction by 20.6~21.5%. This suggested that Si supply improved root retention of Cd by fixing it on the cell wall and thus restricted intracellular transportation of Cd. Further analysis unraveled that pectin (especially ionic-soluble pectin) of the cell wall was the main binding component, and Si supply induced more Cd accumulation in covalent-soluble pectin and hemicellulose. Moreover, the overexpression of germin-like proteins (GLPs) proved the role of cell wall in moderating Cd toxicity. Under long-term Cd exposure, Si promoted phytochelatin 2 (PC2) and phytochelatin 3 (PC3) synthesis in cytosol, at the same time, Si down-regulated the expression of the Cd efflux-related protein multidrug resistance-associated protein-like ATP-binding cassette transporters (MRP-like ABC transporters) and limited Cd transportation from vacuole to cytosol. Taken together, Si rather predominates in limiting Cd translocation by the cell wall of root under short-term Cd exposure and promoting vacuole compartmentalization to mitigate the Cd toxicity under long-term exposure, instead of reducing the absorption of Cd in rice roots, thereby decreasing Cd delivery into shoots.Contact toxicity assessments of six reduced risk insecticides were carried out to compare their selectivity and sensitivity toward the minute pirate bug Orius strigicollis and its prey Thrips hawaiiensis. Additionally, and their potential exposure risk were evaluated for O. strigicollis. The LR50 value of acetamiprid, emamectin benzoate, cyetpyrafen, and indoxacarb to T. hawaiiensis were 0.126, 2.093, 7.486, and 2.264 g a.i. ha-1, respectively, far less than the maximum field recommended rate (MFRR) for each. These four insecticides showed higher selectivity for predator and prey with selectivity ratio values of 37.3, 14.8, 22.1, and 119.3, respectively. However, the LR50 value of acetamiprid and emamectin benzoate were lower than MFRR, and unacceptable (approximately unacceptable for emamectin benzoate) risk to O. strigicollis in in-field, and the opposite results were shown in cyetpyrafen and indoxacarb. Although T. hawaiiensis was more sensitive to abamectin than O. strigicollis, the insecticide had poor selectivity for both test insects. The LR50 value of spirotetramat was more than 3 fold MFRR for T. hawaiiensis and O. strigicollis, showing extremely low contact toxicity and selectivity. In general, acetamiprid, emamectin benzoate, cyetpyrafen, and indoxacarb showed high bioactivity against T. hawaiiensis, but only cyetpyrafen and indoxacarb could be well compatible with O. strigicollis, the combination of two insecticides with O. strigicollis indicated a potential strategy for the efficient and safe control of T. hawaiiensis.Antibiotics and nanoplastics are two prevalent pollutants in oceans, posing a great threat to marine ecosystems. As antibiotics and nanoplastics are highly bioconcentrated in lower trophic levels, evaluating their impacts on marine organisms via dietary exposure route is of great importance. In this study, the individual and joint effects of dietborne sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) in marine medaka (Oryzias melastigma) were investigated. After 30 days of dietary exposure, 4.62 mg/g SMZ decreased the Chao1 index (60.86% for females and 26.85% for males) and the Shannon index (68.95% for females and 65.05% for males) and significantly altered the structure of gut microbial communities in both sexes. The female fish exposed to 4.62 mg/g SMZ exhibited higher intestinal sod (43.5%), cat (38.5%) and gpx (39.6%) transcripts, indicating oxidative stress in the gut. PS alone at 3.45 mg/g slightly altered the composition of the gut microbiota. Interestingly, the mixture of SMZ and PS caused more modest effects on the gut microbiota and intestinal antioxidant physiology than the SMZ alone, suggesting that the presence of PS might alleviate the intestinal toxicity of SMZ in a scenario of dietary co-exposure. This study helps better understand the risk of antibiotics and nanoplastics to marine ecosystems.As an essential plant micronutrient, copper (Cu) is required as a component of several enzymes, but it can be highly toxic to plants when present in excess quantities. Nitrogen (N) application can help to alleviate the phytotoxic effects of heavy metals, including Cu, and different N forms significantly affect the uptake and accumulation of heavy metals in plants. The aim of this study was to determine the effects of different N forms, i.e., ammonium (NH4+) and nitrate (NO3-), on Cu detoxification in wheat seedlings. The inhibition of seedling growth under excess Cu was more obvious in wheat plants supplied with NO3- than in those supplied with NH4+. This growth inhibition was directly induced by excess Cu accumulation and reduced absorption of other mineral nutrients by the plants. Compared with seedlings treated with NO3-, those treated with NH4+ showed a decrease in Cu-induced toxicity as a result of increased antioxidant capacity in the leaves and a lower redox potential in the rhizosphere. Furthermore, treatment with NH4+ decreased the loss of mineral nutrients in wheat seedlings exposed to excess Cu. In conclusion, compared with supplying NO3-, supplying NH4+ to wheat seedlings under Cu stress improved their ability to maintain their nutritional and redox balance and increased their antioxidant capacity, thereby preventing a decline in photosynthesis. According to our results, NH4+ is more effective than NO3- in reducing Cu phytotoxicity in wheat seedlings.The reasonable disposal of plant biomass containing heavy metals (HMs) is a difficult problem for the phytoremediation technology. This review summarizes current literature that introduces various disposal and utilization methods (heat treatment, extraction treatment, microbial treatment, compression landfill, and synthesis of nanomaterials) for phytoremediation plants with HMs. The operation process and technical parameters of each disposal method are different. HMs can migrate and transform in different disposal processes. Some disposal and utilization methods can get some by-products. The main purpose of this paper is to provide reference for technical parameters and characteristics of various disposal and utilization methods, so as to choose and use the appropriate method for the treatment of plant biomass containing HMs after phytoremediation.Dissolved organic matter (DOM) plays an indispensable role in ecosystem services and functions in wetlands. While most wetlands have undergone increased nitrogen (N) loading due to intensive human activities, the response of DOM characteristics to long-term N addition remains unexplored. In this study, we assessed the changes in dissolved organic carbon (DOC), NH4+, NO3-, dissolved organic N (DON), dissolved total N (DTN), and dissolved total phosphorus (DTP) in surface water and soil pore water at 15 cm depth after 10 years of N addition at four levels (0, 60, 120, and 240 kg N hm-2 year-1) in a freshwater marsh of Northeast China. We also examined the effect of N addition on DOM aromaticity and humification by measuring the specific UV absorbance at 254 nm (SUVA254), the color per C unit (C/C ratio), and the fulvic acid/humic acid ratio (E4/E6 ratio). Our results showed that N addition significantly altered DOM properties, but the direction and magnitude of these changes generally did not vary with the N addition level. During the growing season, DOC, NH4+, NO3-, DON, and DTN concentrations in both surface water and soil pore water were increased by N addition. Accordingly, N addition increased the DOC/DTP and DTN/DTP ratios but decreased the DOC/DTN ratio in surface water and soil pore water. In addition, the SUVA254 value and C/C ratio increased, while the E4/E6 ratio reduced after N addition in surface water and soil pore water, indicating increases in DOM aromaticity and humification. These observations suggest that long-term N addition changes DOM characteristics by causing stoichiometric imbalances and increasing recalcitrant compounds in temperate freshwater wetlands, which may then deteriorate water quality, alter microbial-mediated ecological processes, and impact downstream aquatic ecosystem structures.The aim of this study was to examine antibiotic resistance profiles and diversity of β-lactamases in Escherichia coli present within the population and the potential spread of resistant E. coli into the receiving environment using city-scale sewage surveillance. In E. coli isolates from ECC plates without antibiotics from ten influent samples (n = 300), highest resistance was observed against ampicillin (16.6%), sulfamethoxazole (9.7%) and trimethoprim (9.0%), while in effluent samples (n = 262) it was against sulfamethoxazole (11.8%), ampicillin (11.5%) and tetracycline (8.8%). All isolates (n = 123) obtained on cefotaxime-containing plates were multidrug-resistant. Several clinically important antibiotic resistance genes (ARGs) were detected in 46 E. coli isolates subjected to whole-genome sequencing, including carbapenemases like NDM-6, VIM-1 and OXA-48-variant, as well as tigecycline resistance gene tet(X4). CTX-M-15 was the most prevalent (42.9%) extended-spectrum β-lactamase among cefotaxime-resistant isolates, followed by CTX-M-27 (31.4%) and CTX-M-14 (17.1%), resembling clinical prevalence in Norway. Most of the sequenced isolates carried other clinically relevant ARGs, such as dfrA17, sul1, sul2, tet(A), aph(6)-Id, aph(3)-Ib and aadA5. Sixteen different sequence types (STs) were identified, including ST131 (39.1%), ST38 (10.9%) and ST69 (8.7%). One E. coli isolate belonging to novel ST (ST11874) carried multiple virulence factors including genotoxin, salmochelin, aerobactin and yersiniabactin, suggesting that this isolate has potential to cause health concerns in future. Our study reveals presence of clinically relevant ARGs like blaNDM-6 and tet(X4) in pathogenic strains, which have so far not been reported from the clinics in Norway. Our study may thus, provide a framework for population-based surveillance of antibiotic resistance.Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme deficiency. Our previous study revealed the level of G6PD changed in wild type (WT) mice after benzene exposure. In this study, the pentose phosphate pathway (PPP) in regulation of benzene-induced hematotoxicity was investigated and other potential pathways were discovered in a G6PD deficiency mouse model. WT and G6PD mutation (G6PDmut) mice were exposed to benzene (diluted in corn oil) at doses of 0 and 160 mg/kg by subcutaneous injection for 5 days/week, 4 weeks. Peripheral blood samples and bone marrow cells (BMCs) were obtained and measured. The levels of nicotinamide adenine dinucleotide phosphate (NADPH),reduced glutathione (GSH) and malondialdehyde (MDA) were detected and comet assay was analyzed for DNA damage in BMCs. Finally, RNA sequencing (RNA-seq) of BMCs was performed. The results showed that white blood cells decreased significantly in G6PDmut mice compared with WT mice after benzene treatment. The ratio of hematopoietic stem/progenitor cells significantly decreased in G6PDmut mice exposed to benzene.

Autoři článku: Ernsthatch6581 (Bean Sherwood)