Erikssonpacheco1616
Additionally, the UV, green, orange and red emissions can be tuned by nanocrystal's size and post-annealing treatments.In photosynthetic green bacteria, chlorosomes provide light harvesting with high efficiency. Chlorosomal carotenoids (Cars) participate in light harvesting together with the main pigment, bacteriochlorophyll (BChl) c/d/e. In the present work, we studied the excited-state dynamics in Cars from Chloroflexus (Cfx.) aurantiacus chlorosomes by near infrared pump-probe spectroscopy with 25 fs temporal resolution at room temperature. The S2 state of Cars was excited at a wavelength of ∼520 nm, and the absorption changes were probed at 860-1000 nm where the excited state absorption (ESA) of the Cars S2 state occurred. Global analysis of the spectroscopy data revealed an ultrafast (∼15 fs) and large (>130 nm) red shift of the S2 ESA spectrum together with the well-known S2 → S1 IC (∼190 fs) and Cars → BChl c EET (∼120 fs). The S2 lifetime was found to be ∼74 fs. Our findings are in line with earlier results on the excited-state dynamics in Cars in vitro. To explain the extremely fast S2 dynamics, we have tentatively proposed two alternative schemes. The first scheme assumed the formation of a vibrational wavepacket in the S2 state, the motion of which caused a dynamical red shift of the S2 ESA spectrum. The second scheme assumed the presence of two potential minima in the S2 state and incoherent energy transfer between them.The modular path integral (MPI) formulation for one-dimensional extended systems, such as spin arrays or molecular aggregates, allows evaluation of spin- or exciton-vibration dynamics with effort that scales linearly with the number of units. This work presents a small matrix decomposition of the modular path integral (SMatMPI), which eliminates tensor storage and enables iterative long-time propagation.Mesoionic N-heterocyclic olefins (mNHOs) were first reported last year and their reactivity remains largely unexplored. Herein we report the reaction of unprotected mNHOs and organic azides as a novel synthetic route to a variety of pyrazolo[3,4-d][1,2,3]triazoles, an important structural motif in drug candidates and energetic materials. The only byproduct aniline can be easily recycled and converted back to the starting organic azide, in compliance with the green chemistry principle. The reaction mechanism has been explored through experimental and computational studies.Molecular junctions have proven invaluable tools through which to explore the electronic properties of molecules and molecular monolayers. In seeking to develop a viable molecular electronics based technology it becomes essential to be able to reliably create larger area molecular junctions by contacting molecular monolayers to both bottom and top electrodes. The assembly of monolayers onto a conducting substrate by self-assembly, Langmuir-Blodgett and other methods is well established. However, the deposition of top-contact electrodes without film penetration or damage from the growing electrode material has proven problematic. This Review highlights the challenges of this area, and presents a selective overview of methods that have been used to solve these issues.Correction for 'Examination of oestrus-dependent alterations of bovine cervico-vaginal mucus glycosylation for potential as optimum fertilisation indicators' by Marie Le Berre et al., Mol. Omics, 2021, 17, 338-346, DOI 10.1039/D0MO00193G.Macrocycles are usually non-porous or barely porous in the solid-state because of their small intrinsic cavity sizes and tendency to close-pack. Here, we use a heterochiral pairing strategy to introduce porosity in a trianglimine macrocycle, by co-crystallising two macrocycles with opposing chiralities. The stable racemic trianglimine crystal contains an interconnected pore network that has a Brunauer-Emmett-Teller (BET) surface area of 355 m2 g-1.The rapid development and affordability of renewable energy sources necessitate innovative energy storage technologies to compensate for their intermittency. The electrochemical reduction of CO2 presents an attractive strategy for renewable energy storage, with considerable advancements in recent years. Copper-based catalysts have spearheaded this progress due to their intrinsic ability to produce valuable multicarbon reaction products. However, Cu is inherently unselective, and considerable efforts are needed to achieve the selective production of multicarbon reaction products on Cu-based catalysts. A multitude of factors affect the selectivity of Cu-catalysts, such as morphology, metal co-catalysts, and incorporation of oxidizing agents. In this review, we have summarized the current progress and the most important strategies for tuning the selectivity towards multicarbon reaction products over nanostructured Cu-based catalysts.The human body comprises rich populations of cells, which are arranged into tissues and organs with diverse functionalities. These cells exhibit a broad spectrum of phenotypes and are often organized as a heterogeneous but sophisticatedly regulated ecosystem - tissue microenvironment, inside which every cell interacts with and is reciprocally influenced by its surroundings through its life span. Therefore, it is critical to comprehensively explore the cellular machinery and biological processes in the tissue microenvironment, which is best exemplified by the tumor microenvironment (TME). The past decade has seen increasing advances in the field of spatial proteomics, the main purpose of which is to characterize the abundance and spatial distribution of proteins and their post-translational modifications in the microenvironment of diseased tissues. this website Herein, we outline the achievements and remaining challenges of mass spectrometry-based tissue spatial proteomics. Exciting technology developments along with important biomedical applications of spatial proteomics are highlighted. In detail, we focus on high-quality resources built by scalpel macrodissection-based region-resolved proteomics, method development of sensitive sample preparation for laser microdissection-based spatial proteomics, and antibody recognition-based multiplexed tissue imaging. In the end, critical issues and potential future directions for spatial proteomics are also discussed.