Eriksenbruhn3932
Histopathological investigation of the brain revealed advanced Alzheimer's disease and Lewy pathology, and the damaged neural tissue, which was positive for the amyloid precursor protein. We determined that the gastric injuries in both cases had been caused by CPR. We conclude that careful investigation is required for gastric injury cases to determine the etiology and correlation between gastric injury and cause of death when the victims receive CPR.For over 70 years experimental autoimmune encephalomyelitis (EAE) has been induced with myelin autoantigens emulsified in complete Freund's adjuvant (CFA) which has significant side effects such as pain, inflammation, and tissue necrosis at the injection site. mTOR inhibitor β-1,3-d-glucan particles (GPs) are hollow microcapsules prepared from Saccharomyces cerevisiae cell walls that induce potent Th17 cell responses without causing strong injection site tissue reactions. We evaluated the potential of GPs complexed with neuroantigens to induce EAE while avoiding undesirable side effects. GPs loaded with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) or proteolipid protein 139-151 (PLP139-151) peptides effectively induced EAE in C57BL/6 mice and SJL mice. Disease severity, CNS pathology and immune responses were comparable between GP- and CFA-immunized mice. Importantly, injection with GPs resulted in significantly decreased inflammation compared with CFA. We posit that use of GPs provides an alternative means for inducing EAE that results in comparable disease, but less discomfort to animals.Osteoporosis commonly affects the elderly and is associated with significant morbidity and mortality. Loss of bone mineral density induces muscle atrophy and increases fracture risk. However, muscle lipid content and droplet size are increased by aging and mobility impairments, inversely correlated with muscle function, and a cause of reduced motor function. Teriparatide, the synthetic form of human parathyroid hormone (PTH) 1-34, has been widely used to treat osteoporosis. Although PTH positively affects muscle differentiation in vitro, the precise function and mechanisms of muscle mass and power preservation are still poorly understood, especially in vivo. In this study, we investigated the effect of PTH on skeletal muscle atrophy and dysfunction using an ovariectomized murine model. Eight-week-old female C57BL/6J mice were ovariectomized or sham-operated. Within each surgical group, the mice were divided into PTH injection or control subgroups. Motor function was evaluated based on grip strength, treadmilld lipid secretion in myoblasts. Thus, PTH could regulate several aspects of muscle function and physiology, and may represent a novel therapeutic strategy for patients with osteoporosis.
Perichondrium autotransplants have been used to reconstruct articular surfaces destroyed by infection or trauma. However, the role of the transplanted perichondrium in the healing of resurfaced joints has not been investigated.
Perichondrial and periosteal tissues were harvested from rats hemizygous for a ubiquitously expressed enhanced green fluorescent protein (EGFP) transgene and transplanted into full-thickness articular cartilage defects at the trochlear groove of distal femur in wild-type littermates. As an additional control, cartilage defects were left without a transplant (no transplant control). Distal femurs were collected 3, 14, 56, 112days after surgery.
Tracing of transplanted cells showed that both perichondrium and periosteum transplant-derived cells made up the large majority of the cells in the regenerated joint surfaces. Perichondrium transplants contained SOX9 positive cells and with time differentiated into a hyaline cartilage that expanded and filled out the defects with Col2a1-posust stimulate regeneration but were themselves transformed into cartilaginous articular surfaces. Perichondrium transplants developed into an articular-like, hyaline cartilage, whereas periosteum transplants appeared to produce a less resilient fibro-cartilage.Papillary Renal Cell Carcinoma (pRCC) is the most common non-clear cell RCC (nccRCC) and a distinct entity, although heterogenous, associated with poor outcomes. The treatment landscape of metastatic pRCC (mpRCC) relied so far on targeted therapies, mimicking previous developments in metastatic clear-cell renal cell carcinoma. However, antiangiogenics as well as mTOR inhibitors retain only limited activity in mpRCC. As development of immune checkpoint inhibitors (ICI) is now underway in patients with mpRCC, we aimed at discussing early activity data and potential for future therapeutic strategies in monotherapy or combination. Expression of immune checkpoints such as PD-L1 and infiltrative immune cells in pRCC could provide insights into their potential immunogenicity, although this is currently poorly described. Based on retrospective and prospective data, efficacy of ICI as single agent remains limited. Combinations with tyrosine-kinase inhibitors, notably with anti-MET inhibitors, harbor promising response rates and may enter the standard of care in untreated patients. Collaborative work is needed to refine the molecular and immune landscape of pRCC, and pursue efforts to set up predictive biomarker-driven clinical trials in these rare tumors.The Yellow Sea (YS), the East China Sea (ECS) and their coastal areas have undergone rapid urbanization and industrialization. These areas are important sinks for many persistent organic pollutants. In this study, the concentration of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in marine sediments from the YS and ECS were investigated. Nineteen PFAS were identified, ranging in concentration from 0.21 ng/g to 4.74 ng/g (mean 1.60 ng/g). Legacy long-chain PFAS [e.g., perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS)] were the dominant contaminants. Alternative PFAS such as 62 chlorinated polyfluorinated ether sulfonate (62 Cl-PFESA) and 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) propanoic acid (HFPO-DA) were identified within the detection range of 16%-100%. HFPO-DA was measured in all sediments in equivalent levels to PFOS (0.119 ng/g and 0.139 ng/g, respectively). This is the first reported occurrence of perfluoro-1-butanesulfonamide (FBSA) and HFPO-DA in marine sediments, indicating a replacement in the production of PFAS from legacy to emerging ones along with eastern coastal cities of China. The results of the potential source identification demonstrated that metal plating plants, textile treatments, fluoropolymer products, food packaging, and the degradation of volatile precursor substances were the main sources of PFAS in the ECS and YS. The environmental risk assessment based on the risk quotient demonstrated that PFOA and PFOS in the ECS and YS may present a low to medium risk at most sampling points.The sensitive detection and rapid removal of 4-aminothiophenol (4-ATP, a poisonous pesticide) demand special design to potential substrates. Herein, a metal-organic framework (ZIF-8) and Ag nanoparticles were fabricated one by one on the TiO2 coated Al sheet, and thus the Al-TiO2-ZIF-8-Ag sheet with sandwich structure was successfully synthesized. The cost-effective Al-TiO2-ZIF-8-Ag sheet (3.7 wt% Ag) possessed a low detection concentration of 1 × 10-9 M towards 4-ATP, and surface-enhanced Raman scattering (SERS) analytical enhanced factor (AEF) of the Al-TiO2-ZIF-8-Ag was 2.6 × 106, which was higher than other similar substrates. Furthermore, 4-ATP can be selectively and repeatedly detected on the Al-TiO2-ZIF-8-Ag even through it was in real samples. It indicated that the Al-TiO2-ZIF-8-Ag was a very active and stable SERS materials for the monitoring of 4-ATP. Importantly, the substrate exhibited faster and more efficient photocatalytic activity for 4-ATP degradation. The SERS and photocatalytic mechanisms of 4-ATP on the Al-TiO2-ZIF-8-Ag substrate were proposed. The cost-effective Al-TiO2-ZIF-8-Ag sheet with double function is plug-and-play, and could be used in the detection and treatment of pollutants in wastewater.Our previous studies have shown that lactic acid bacteria (LABs) can bind and remove di-n-butyl phthalate (DBP), diethyl phthalate, and dioctyl phthalate; three ubiquitous environmental phthalate contaminants. In this study, Lactobacillus acidophilus NCFM was chosen to study the DBP binding mechanism. We found that the three-dimensional structure of the bacterial cell wall, including the carbohydrates and proteins, was essential for DBP adsorption. Peptidoglycan was the main binding component in the cell wall (80.71%), and binding sites exposed to DBP were C-N, N-H, O-H, and C-O bonds. Molecular dynamic (MD) studies demonstrated that hydrophobic interaction plays an important role in DBP adsorption, the chemical sites that influenced the binding in the peptidoglycan model were O2, O3>N1, N2, N3>O1, O4, and the form of adsorption force included hydrogen bonding force, electrostatic force, and van der Waals forces. These theoretical data from the MD simulation were consistent with the experimental results in terms of the ability of this bacterium to bind DBP, so the MD simulation proposed a new way to investigate the mechanisms of phthalate binding to LABs.Even though the genetic attributes suggest presence of multiple degradation pathways, most of rhodococci are known to transform PCBs only via regular biphenyl (bph) pathway. Using GC-MS analysis, we monitored products formed during transformation of 2,4,4'-trichlorobiphenyl (PCB-28), 2,2',5,5'-tetrachlorobiphenyl (PCB-52) and 2,4,3'-trichlorobiphenyl (PCB-25) by previously characterized PCB-degrading rhodococci Z6, T6, R2, and Z57, with the aim to explore their metabolic pleiotropy in PCB transformations. A striking number of different transformation products (TPs) carrying a phenyl ring as a substituent, both those generated as a part of the bph pathway and an array of unexpected TPs, implied a curious transformation ability. We hypothesized that studied rhodococcal isolates, besides the regular one, use at least two alternative pathways for PCB transformation, including the pathway leading to acetophenone formation (via 3,4 (4,5) dioxygenase attack on the molecule), and a third sideway pathway that includes stepwise oxidative decarboxylation of the aliphatic side chain of the 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate. Structure of the identified chlorinated benzoic acids and acetophenones allowed us to hypothesize that the first two pathways were the outcome of a ring-hydroxylating dioxygenase with the ability to attack both the 2,3 (5,6) and the 3,4 (4,5) positions of the biphenyl ring as well as dechlorination activity at both, -ortho and -para positions. We propose that several TPs produced by the bph pathway could have caused the triggering of the third sideway pathway. In conclusion, this study proposed ability of rhodococci to use different strategies in PCB transformation, which allows them to circumvent potential negative aspect of TPs on the overall transformation pathway.The Z-scheme heterojunction is a photocatalyst with narrow band gap and sufficiently high oxidization and reduction powers for degradation of pollutants in waters. This review firstly summarizes the fundamentals of photocatalysis, and explains the need to develop Z-scheme heterojunctions to harvest energy from sunlight effectively. Secondly, contemporary reports of degradation wastewater pollutants, including organic dyes, antibiotics, and other chemicals are reviewed and discussed. A challenge in the selection of an appropriate Z-scheme for removing a specific pollutant is the lack of available energy levels that are offered by the catalyst and the lack of redox energy levels that are required to break down essential chemical bonds of the pollutants. With reference to the redox energy levels offered by the active photocatalytic species, the redox energy levels of specific pollutants studied in literature are estimated. Challenges and prospects concerning the use of the Z-scheme to degrade recalcitrant pollutants under irradiation by sunlight are outlined at the end of this review.