Erichsenmcfarland6731
Δ8 -Tetrahydrocannabinol (Δ8 -THC) as isomer of the well-known Δ9 -THC has a similar mode of action, and the potency was estimated to be two thirds compared with Δ9 -THC. Selleckchem GF109203X Content of Δ8 -THC in plant material is low, but formulations containing Δ8 -THC in high concentrations are gaining popularity. Δ8 -THC is to be regarded as prohibited substance according to the Prohibited List of the World Anti-Doping Agency (WADA). Contradictory results between initial testing procedure and confirmatory quantitation for 11-Nor-9-carboxy-Δ9 -tetrahydrocannabinol (Δ9 -THC-COOH) of a doping control sample gave rise for follow-up testing procedures. After alkaline hydrolysis and liquid-liquid extraction, the sample was analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) using isocratic elution instead of gradient elution, which is used for standard procedure. Isocratic elution resulted in two peaks instead of one using gradient elution. Both peaks showed same fragmentation. Using certified reference materials, one peak could be assigned to Δ9 -THC-COOH and the other one with higher intensity to the less common 11-Nor-9-carboxy-Δ8 -Tetrahydrocannabinol (Δ8 -THC-COOH) in a concentration of approximately 1200 ng/ml. As complementary method, gas chromatography tandem mass spectrometry (GC-MS/MS) can also be used for identification. Here Δ8 - and Δ9 -THC-COOH can be distinguished by chromatography and by fragmentation. Additional investigations of doping control samples containing Δ9 -THC-COOH revealed the simultaneous presence of Δ8 -THC-COOH in low concentrations (0.22-8.91 ng/ml) presumably due to plant origin. Percentage of Δ8 -THC-COOH varies from 0.05 to 2.83%. In vitro experiments using human liver microsomes showed that Δ8 -THC is metabolized in the same way as Δ9 -THC.There is no doubt that hydrogen energy can play significant role in promoting the development and progress of modern society. The utilization of hydrogen energy has developed rapidly, but it is far from the requirement of human. Therefore, it is very urgent to develop methodologies and technologies for efficient hydrogen production, especially high activity and durable electrocatalysts. Here a bimetallic oxide cluster on heterostructure of vanadium ruthenium oxides/graphdiyne (VRuOx /GDY) is reported. The unique acetylene-rich structure of graphdiyne achieves outstanding characteristics of electrocatalyst i) controlled preparation of catalysts for achieving multiple-metal clusters; ii) regulation of catalyst composition and morphology for synthesizing high-performance catalysts; iii) highly active and durable hydrogen evolution reaction (HER) properties. The optimal porous electrocatalyst (VRu0.027 Ox /GDY) can deliver 10 mA cm-2 at low overpotentials of 13 and 12 mV together with robust long-term stability in alkaline and neutral media, respectively, which are much smaller than Pt/C. The results reveal that the synergism of different components can efficiently facilitate the electron/mass transport properties, reduce the energy barrier, and increase the active site number for high catalytic performances.Ectomycorrhiza-associated bacteria, especially endofungal bacterial microbiota (EBM) in the fruiting body, play important roles in driving the establishment and function of ectomycorrhizae. However, the influence of ectomycorrhizal fungus bolete identity on their EBM is still unclear. We analysed the EBM of three different bolete fruiting body species on Thousand Island Lake, including Tylopilus felleus, Tylopilus areolatus and Boletus queletii, and compared them with their corresponding mycosphere soil bacterial microbiota by high-throughput sequencing. The EBM was classified into Bacillus, Pseudomonas, Burkholderia and Stenotrophomonas genera. Proteobacteria, Bacteroidetes and Acidobacteria were predominant in the EBM of bolete fruiting bodies as well as their mycosphere soil, while Firmicutes was significantly higher in the EBM. Moreover, the core microbiome (342 operational taxonomic units) of the EBM was shared among the three bolete fungal species. The relative abundances of gene families related to cell cycle control and nucleotide, coenzyme and lipid metabolism were significantly higher in the EBM than in the corresponding mycosphere soil bacterial microbiota, but there was no difference among the three different boletes. The results suggested that the host identity of ectomycorrhizal fungus boletes could affect the EBM, which might be mainly due to the selection of host fungi for the different functional EBM needed.
This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD).
Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis.
Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume.
These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.Cytoplasmic male sterility(CMS), a maternally inherited trait, provides a promising means to harness yield gains associated with hybrid vigor. In pigeonpea [Cajanus cajan (L.) Huth], nine types of sterility-inducing cytoplasm have been reported, of which A2 and A4 have been successfully deployed in hybrid breeding. Unfortunately, molecular mechanism of the CMS trait is poorly understood because of limited research invested. More recently, an association between a mitochondrial gene (nad7) and A4 -CMS has been demonstrated in pigeonpea; however, the mechanism underlying A2 -CMS still remains obscure. The current investigation aimed to analyze the differences in A2 -CMS line (ICPL 88039A) and its isogenic maintainer line (ICPL 88039B) at transcriptome level using next-generation sequencing. Gene expression profiling uncovered a set of 505 genes that showed altered expression in response to CMS, of which, 412 genes were upregulated while 93 were downregulated in the fertile maintainer line vs. the CMS line. Further, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses revealed association of CMS in pigeonpea with four major pathways glucose and lipid metabolism, ATP production, pollen development and pollen tube growth, and reactive oxygen species (ROS) scavenging. Patterns of digital gene expression were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) of six candidate genes. This study elucidates candidate genes and metabolic pathways having potential associations with pollen development and male sterility in pigeonpea A2 -CMS. New insights on molecular mechanism of CMS trait in pigeonpea will be helpful to accelerate heterosis utilization for enhancing productivity gains in pigeonpea.The popularity of fat-free fermented concentrated milk products, such as fresh cheeses and high-protein yogurt, has increased over the recent years, attributed to greater availability and improvements in taste and texture. These improvements have been achieved through modifications and new developments in processing technologies, for example, higher heat treatment intensities and incorporating different membrane filtration technologies. Though numerous processing parameters are discussed in the literature, as well as reasons behind the developments, detailed examinations of how process modifications affect the final textural attributes of these products are lacking. To draw links between processing parameters and texture, we review the literature on fat-free fermented concentrated milk products from the perspective of fermented milk protein-based microgel particles as the basic structural unit. At each main processing step, relationships between process parameters, micro- and macrostructural and sensory (textural) properties are discussed.An overview of particle characteristics that drive structural changes at each processing step is developed in relation to textural characteristics. Using this approach of assessing relationships between structural characteristics of concentrated dispersions of fat-free fermented milk protein-based microgel particles and processing parameters provides a basic context for the selection of optimal parameters to achieve a desired texture.Poly-L-lactic acid (PLLA) is one of the most commonly used synthetic materials for regenerative medicine, and silk fibroin (SF) is a natural protein with excellent biocompatibility. Combination of PLLA and SF in a proper proportion by electrospinning may generate composite nanofibers that could meet the requirements of scaffolding in bone tissue engineering. The application of PLLA/SF nanofibrous scaffold for osteogenesis is well established in vitro and in vivo. However, PLLA/SF nanofibrous scaffold does not have an ideal ability to promote cell adhesion, proliferation, and differentiation. Extracellular matrix (ECM) plays a critical role in modulating cellular behavior. However, the role of combination of natural ECM with nanofibrous scaffold in regulating osteogenic differentiation is unclear. In this study, we aimed to develop a novel composite PLLA/SF nanofibrous scaffold coated with osteoblast-derived extracellular matrix (O-ECM/PLLA/SF) and analyze the effects of the modified scaffold on osteogenic differentiation of BMSCs. The surface structural features and compositions of the O-ECM/PLLA/SF scaffold were characterized by SEM and immunofluorescence staining. The capacities of the O-ECM/PLLA/SF scaffold to induce osteogenic differentiation of BMSCs were investigated by alkaline phosphatase (ALP) and alizarin red staining (ARS). The results showed BMSCs cultured on O-ECM/PLLA/SF scaffold significantly increased osteogenic differentiation compared with cells cultured individually on a scaffold or O-ECM. Collectively, these findings indicate that O-ECM-coated nanofibrous scaffold can be a promising strategy for osteogenic differentiation of BMSCs, opening a new possibility of utilizing composite scaffolds for bone tissue engineering.