Emersonbarrett6666

Z Iurium Wiki

d with participant willingness or reluctance to change behavior will also be assessed. Attrition will also be assessed at each stage of the study.

The study protocol has been presented to our regional ethics committee (Req-2020-01262), which issued a declaration of no objection as such projects do not fall within the scope of the Swiss federal law on human research. Data collection began on November 5, 2020, and should be completed by December 4, 2020.

This study should determine whether "Escape COVID-19," a serious game designed to improve compliance with COVID-19 safe practices, modifies the intention to follow IPC guidelines among nursing home employees.

DERR1-10.2196/25595.

DERR1-10.2196/25595.For the target-tracking problem, full state of the target may not be available since it may be expensive or impossible to obtain. Thus, the state needs to be reconstructed or estimated only according to measured inputs and outputs. The impossible case that all followers can measure the target directly yields the study of distributed methods, thus reducing the communication and computation resource while resulting in more robustness. This article confronts these problems by addressing a distributed iterative finite impulse response (DIFIR) consensus filter for leader-following systems. A solution to the underlying problem is obtained by involving a distributed measurement model wherein not only the neighbors' estimates are applied but also the directed measurement data are used, and expressed by a computationally efficient iterative algorithm. Applying this DIFIR strategy, it is shown that the leader's estimates by all followers reach H∞ consensus, whose value is the local unbiased estimates of the leader. Then, the result is extended to multiagent systems whose leader has unknown inputs. Incorporating the input estimates, a new DIFIR is proposed. Finally, examples are given to illustrate the consistency and robustness of the developed new design techniques.A key energy consumption in steel metallurgy comes from an iron ore sintering process. Enhancing carbon utilization in this process is important for green manufacturing and energy saving and its prerequisite is a time-series prediction of carbon efficiency. The existing carbon efficiency models usually have a complex structure, leading to a time-consuming training process. In addition, a complete retraining process will be encountered if the models are inaccurate or data change. Analyzing the complex characteristics of the sintering process, we develop an original prediction framework, that is, a weighted kernel-based fuzzy C-means (WKFCM)-based broad learning model (BLM), to achieve fast and effective carbon efficiency modeling. First, sintering parameters affecting carbon efficiency are determined, following the sintering process mechanism. Next, WKFCM clustering is first presented for the identification of multiple operating conditions to better reflect the system dynamics of this process. Then, the BLM is built under each operating condition. Finally, a nearest neighbor criterion is used to determine which BLM is invoked for the time-series prediction of carbon efficiency. Experimental results using actual run data exhibit that, compared with other prediction models, the developed model can more accurately and efficiently achieve the time-series prediction of carbon efficiency. Furthermore, the developed model can also be used for the efficient and effective modeling of other industrial processes due to its flexible structure.The constant development of sensing applications using innovative and affordable measurement devices has increased the amount of data transmitted through networks, carrying in many cases, redundant information that requires more time to be analyzed or larger storage centers. Pentylenetetrazol price This redundancy is mainly present because the network nodes do not recognize environmental variations requiring exploration, which causes a repetitive data collection in a set of limited locations. In this work, we propose a multiagent learning framework that uses the Gaussian process regression (GPR) to allow the agents to predict the environmental behavior by means of the neighborhood measurements, and the rate distortion function to establish a border in which the environmental information is neither misunderstood nor redundant. We apply this framework to a mobile sensor network and demonstrate that the nodes can tune the parameter s of the Blahut-Arimoto algorithm in order to adjust the gathered environment information and to become more or less exploratory within a sensing area.In terms of pipeline leak detection, the unavoidable fact is that existing data could not provide enough effective leak data to train a high accuracy model. To address this issue, this article proposes mixed generative adversarial networks (mixed-GANs) as a practical way to provide additional data, ensuring data reliability. First, multitype generative networks with heterogeneous parameter-updating mechanisms are designed to explore a variety of different solutions and eliminate the potential risks of instable training and scenario collapse. Then, based on expert experience, two data constraints are proposed to describe leak characteristics and further evaluate the quality of generated leak data in the training process. Through integrating the particle swarm optimization algorithm into generative model training, mixed-GAN has better generation performance than the conventional gradient descent algorithm. Based on the above-mentioned contents, the proposed model is able to provide satisfactory leak data with different scenarios, contributing to data quantity expansion, data credibility enhancement, and data variety enrichment. Finally, extensive experiments are given to illustrate the effectiveness of the proposed generative model for pipeline network leak detection.This article studies the issue of adaptive event-triggered output-feedback control for switched p-normal nonlinear systems with the unknown homogeneous growth rate. A homogeneous output-feedback controller is first designed for nominal nonlinear systems based on adding one power integrator technique. Then, a dynamic gain technique is introduced to deal with the difficulty caused by the unknown homogeneous growth rate. With an elaborate design of the adaptive law of the dynamic gain, a novel adaptive event-triggered output-feedback controller is developed to ensure that the closed-loop system is globally asymptotically stable. Meanwhile, a new analysis way is proposed to prove that the Zeno behavior is excluded in the event-triggered control system. Finally, two examples are provided to indicate the effectiveness of the proposed control method.This article considers the quasisynchronization of memristive neural networks (MNNs) with communication delays via event-triggered impulsive control (ETIC). In view of the limited communication and bandwidth, we adopt a novel switching event-triggered mechanism (ETM) that not only decreases the times of controller update and the amount of data sent out but also eliminates the Zeno behavior. By using an appropriate Lyapunov function, several algebraic conditions are given for quasisynchronization of MNNs with communication delays. More important, there is no restriction on the derivation of the Lyapunov function, even if it is an increasing function over a period of time. Then, we further propose a switching ETM depending on communication delays and aperiodic sampling, which is more economical and practical and can directly avoid Zeno behavior. Finally, two simulations are presented to validate the effectiveness of the proposed results.The connectivity is an essential property of the connections between the nodes in networks. The efficient determination algorithm for the connectivity of complex directed networks is an important research direction in graph theory. link2 Aiming at the determination problem of the strong connectivity of directed networks, we propose an improved algorithm over the Warshall algorithm, which extends the research object to complex directed networks and has only the half time complexity of that of the latter. In addition, this article also takes the lead in research on the determination algorithm for the unilateral connectivity of complex directed networks, and on this basis, we propose an algorithm to efficiently determine the unilateral connectivity. Finally, the above two algorithms are integrated into a unified and efficient algorithm with the time complexity of O(n³+4.5n²). This algorithm can determine not only the strong connectivity but also the unilateral connectivity of complex directed networks.Due to the high resistance/reactance (R/X) ratio of a low-voltage microgrid (LVMG), virtual complex impedance-based P-V/Q-ω droop control is adopted in this article as the primary control (PC) technique for stabilizing the system. A distributed event-triggered restoration mechanism (ETSM) is proposed as the secondary control (SC) technique to restore the output-voltage frequency and improve power sharing accuracy. The proposed ETSM ensures that neighboring communication happens only at some discrete instants when a predefined event-triggering condition (ETC) is fulfilled. In general, the design of the ETC is the crucial challenge of an event-triggered mechanism (ETM). link3 Thus, in this article, a static ETM (SETM) is proposed as the ETC at first, where two static parameters are utilized to reduce the triggering frequency. Bounded stability is ensured under the SETM, which means that the output-voltage frequency is restored to the vicinity of its nominal value, and close to fair utilization of the distributed generators (DGs) is achieved. To further improve the power sharing accuracy and accelerate the regulation process, a dynamic ETM (DETM) is then introduced. In the DETM, two dynamic parameters that converge to zero in the steady state are designed, which promises asymptotic stability of the system. Besides, Zeno behavior is excluded in both mechanisms. An LVMG consisting of four DGs is constructed in MATLAB/Simulink to illustrate the effectiveness of the proposed methods, and the simulations correspond with our theoretical analysis.High-dimensional problems are ubiquitous in many fields, yet still remain challenging to be solved. To tackle such problems with high effectiveness and efficiency, this article proposes a simple yet efficient stochastic dominant learning swarm optimizer. Particularly, this optimizer not only compromises swarm diversity and convergence speed properly, but also consumes as little computing time and space as possible to locate the optima. In this optimizer, a particle is updated only when its two exemplars randomly selected from the current swarm are its dominators. In this way, each particle has an implicit probability to directly enter the next generation, making it possible to maintain high swarm diversity. Since each updated particle only learns from its dominators, good convergence is likely to be achieved. To alleviate the sensitivity of this optimizer to newly introduced parameters, an adaptive parameter adjustment strategy is further designed based on the evolutionary information of particles at the individual level.

Autoři článku: Emersonbarrett6666 (Hvidberg Pope)