Ellisterp8487

Z Iurium Wiki

Nanoparticles (NPs) have become an important field of research over the past several decades with applications in various sectors, such as biomedical, cosmetic, food and many others, because of their unique characteristics. The green synthesis of nanoparticles has been preferred because of the naturally occurring reductants present in biological systems that decreases exposure to toxic chemicals compared with physico-chemical methods and is eco-friendly. Zinc oxide (ZnO) NPs exhibit broad and potential applications in different fields with their specific characteristics such as surface area, size, shape, low toxicity, optical properties, high binding energy and large band gap. This paper focuses on the bio-synthesis of ZnO NPs by utilizing extracts of different plant parts (stem, flower, fruit, peel, and leaves) through efficient, economical, simple, pure, and eco-friendly green routes. In this process, zinc salts have been used as precursor and phytochemicals in the plant extract reduce the metal salt to lower oxidation state as well as stabilize the ZnO NPs. The morphological and physico-chemical properties of obtained NPs analyzed by various characterization techniques have been discoursed. Further, antimicrobial activity and potential photocatalytic application in terms of the degradation of dyes have also been reviewed in addition to the toxicity aspects of these NPs on human beings and animals.The COVID-19 pandemic has spread worldwide, affecting millions of people and exposing them to home quarantine, isolation, and social distancing. While recent reports showed increased distress and depressive/anxiety state related to COVID-19 crisis, we investigated how home quarantine affected sleep parameters in healthy individuals. 160 healthy individuals who were in home quarantine in April 2020 for at least one month participated in this study. Participants rated and compared their quantitative sleep parameters (time to go to bed, sleep duration, getting-up time) and sleep quality factors, pre-and during home quarantine due to the COVID-19 pandemic. Furthermore, participants' chronotype was determined to see if sleep parameters are differentially affected in different chronotypes. Time to fall asleep and get-up in the morning were significantly delayed in all participants, indicating a significant circadian misalignment. Sleep quality was reported to be significantly poorer in all participants and chronotypes. Poor sleep quality included more daily disturbances (more sleep disturbances, higher daily dysfunctions due to low quality of sleep) and less perceived sleep quality (lower subjective sleep quality, longer time taken to fall asleep at night, more use of sleep medication for improving sleep quality) during home quarantine. Home quarantine due to COVID-19 pandemic has a detrimental impact on sleep quality. Online interventions including self-help sleep programs, stress management, relaxation practices, stimulus control, sleep hygiene, and mindfulness training are available interventions in the current situation.Prosopis juliflora (P. juliflora) is a widespread phreatophytic tree, which belongs to the Fabaceae family. The goal of the present study is to investigate the potential anti-cancer effect of P. juliflora leave extracts and to identify its chemical composition. For this purpose, MCF-7 (breast), HepG2 (liver), and LS-174T (colorectal) cancer cell lines were cultivated and incubated with various concentrations of P. juliflora leave extracts, and its impact on cell viability, proliferation, and cell cycle stages was investigated. P. juliflora leave extracts induced concentration-dependent cytotoxicity against all tested cancer cell lines. The calculated IC50 was 18.17, 33.1 and 41.9 μg/ml for MCF-7, HePG2 and LS-174T, respectively. Detailed analysis revealed that the cytotoxic action of P. juliflora extracts was mainly via necrosis but not apoptosis. Moreover, DNA content flow cytometry analysis showed cell-specific anti-proliferative action and cell cycle stages arrest. click here In order to identify the anti-cancer constituents of P. juliflora, the ethyl extracts were analyzed by liquid chromatography-mass spectrometry. The major constituents identified in the ethyl extracts of P. juliflora leaves were hydroxymethyl-pyridine, nicotinamide, adenine, and poly-(methyl methacrylate) (PMMA). In conclusion, P. juliflora ethyl acetate extracts have a potential anti-cancer effect against breast adenocarcinoma, hepatocellular carcinoma, and colorectal adenocarcinoma, and is enriched with anti-cancer constituents. See also Figure 1(Fig. 1).Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.The COVID-19 disease is caused by SARS-CoV-2 and spreading rapidly worldwide with extremely high infection rate. Since effective and specific vaccine is not available to combat the deadly COVID-19, the objective of our study was to design a multi-epitope vaccine using immunoinformatics approach with translational implications. Nucleocapsid (N) protein of SARS-CoV-2 is stable, conserved and highly immunogenic along with being less prone to mutations during infection, which makes it a suitable candidate for designing vaccine. In our study, B- and T-cells epitopes were identified from N protein and screened based on crucial parameters to design the multi-epitope vaccine construct. Additionally, human beta-defensin-2 was incorporated into the vaccine construct as an adjuvant along with suitable linkers followed by its further evaluation based on crucial parameters including allergenicity, antigenicity, stability etc. Combined major histocompatibility complexes (MHC-I and MHC-II) binding epitopes presented broader population coverage of the vaccine throughout the world.

Autoři článku: Ellisterp8487 (McMahan Barber)