Elliseriksen4861

Z Iurium Wiki

The simulation results show that the frontal impact of the skull produces the largest amount of BFD, and when the impact directions are from the side, the skull stress is about twice higher than other directions. As the impact velocity increases, BFD, brain displacement, skull stress, and dura mater pressure increase. The brain damage caused by different structural bullet bodies is different under the condition of the same kinetic energy. selleck chemicals The skull stress caused by the handgun bullet is the largest. The findings indicate that when a bullet impacts on the bullet-proof helmet, it has a higher probability of causing brain displacement and intracranial high pressure. The research results can provide a reference value for helmet optimization design and antielasticity evaluation and provide the theoretical basis for protection and rescue. Copyright © 2020 Zhihua Cai et al.Mathematical modelling has been used to study tumor-immune cell interaction. Some models were proposed to examine the effect of circulating lymphocytes, natural killer cells, and CD8+T cells, but they neglected the role of CD4+T cells. Other models were constructed to study the role of CD4+T cells but did not consider the role of other immune cells. In this study, we propose a mathematical model, in the form of a system of nonlinear ordinary differential equations, that predicts the interaction between tumor cells and natural killer cells, CD4+T cells, CD8+T cells, and circulating lymphocytes with or without immunotherapy and/or chemotherapy. link2 This system is stiff, and the Runge-Kutta method failed to solve it. Consequently, the "Adams predictor-corrector" method is used. The results reveal that the patient's immune system can overcome small tumors; however, if the tumor is large, adoptive therapy with CD4+T cells can be an alternative to both CD8+T cell therapy and cytokines in some cases. Moreover, CD4+T cell therapy could replace chemotherapy depending upon tumor size. Even if a combination of chemotherapy and immunotherapy is necessary, using CD4+T cell therapy can better reduce the dose of the associated chemotherapy compared to using combined CD8+T cells and cytokine therapy. Stability analysis is performed for the studied patients. It has been found that all equilibrium points are unstable, and a condition for preventing tumor recurrence after treatment has been deduced. Finally, a bifurcation analysis is performed to study the effect of varying system parameters on the stability, and bifurcation points are specified. New equilibrium points are created or demolished at some bifurcation points, and stability is changed at some others. Hence, for systems turning to be stable, tumors can be eradicated without the possibility of recurrence. The proposed mathematical model provides a valuable tool for designing patients' treatment intervention strategies. Copyright © 2020 Ahmed M. Makhlouf et al.The objective of this study was to compare the effects of different shunt diameters and pulmonary artery (PA) stenosis grades on the hemodynamics of central shunts to determine an optimal surgical plan and improve the long-term outcomes of the operation. A 3D anatomical model was reconstructed based on the patient's clinical CT data. 3D computational fluid dynamics models were built with varying degrees of stenosis (the stenosis ratio α was represented by the ratio of blood flow through the main pulmonary artery to cardiac output, ranging from 0 to 30%; the smaller the value of α, the more severe the pulmonary artery stenosis) and varying shunt diameters (3, 3.5, 4, 4.5, and 5 mm). Our results show that the asymmetry of pulmonary artery flow increased with increasing shunt diameter and α, which will be more conducive to the development of the left pulmonary artery. Additionally, the pulmonary-to-systemic flow ratio (Q P/Q S) increases with the shunt diameter and α, and all the values exceed 1. When the shunt diameter is 3 mm and α = 0%, Q P/Q S reaches the minimum value of 1.01, and the oxygen delivery reaches the maximum value of 205.19 ml/min. However, increasing shunt diameter and α is beneficial to reduced power loss and smoother PA flow. In short, for patients with severe PA stenosis (α is small), a larger-diameter shunt may be preferred. Conversely, when the degree of PA stenosis is moderate, a smaller shunt diameter can be considered. Copyright © 2020 Jiawei Liu et al.Statistical distributions play a prominent role in applied sciences, particularly in biomedical sciences. The medical data sets are generally skewed to the right, and skewed distributions can be used quite effectively to model such data sets. In the present study, therefore, we propose a new family of distributions to model right skewed medical data sets. The proposed family may be named as a flexible reduced logarithmic-X family. The proposed family can be obtained via reparameterizing the exponentiated Kumaraswamy G-logarithmic family and the alpha logarithmic family of distributions. A special submodel of the proposed family called, a flexible reduced logarithmic-Weibull distribution, is discussed in detail. Some mathematical properties of the proposed family and certain related characterization results are presented. The maximum likelihood estimators of the model parameters are obtained. A brief Monte Carlo simulation study is done to evaluate the performance of these estimators. Finally, for the illustrative purposes, three applications from biomedical sciences are analyzed and the goodness of fit of the proposed distribution is compared to some well-known competitors. Copyright © 2020 Yinglin Liu et al.Fractional flow reserve (FFR) has proved its efficiency in improving patient diagnosis. In this paper, we consider a 2D reconstructed left coronary tree with two artificial lesions of different degrees. We use a generalized fluid model with a Carreau law and use a coupled multidomain method to implement Windkessel boundary conditions at the outlets. We introduce our methodology to quantify the virtual FFR and conduct several numerical experiments. We compare FFR results from the Navier-Stokes model versus generalized flow model and for Windkessel versus traction-free outlet boundary conditions or mixed outlet boundary conditions. We also investigate some sources of uncertainty that the FFR index might encounter during the invasive procedure, in particular, the arbitrary position of the distal sensor. The computational FFR results show that the degree of stenosis is not enough to classify a lesion, while there is a good agreement between the Navier-Stokes model and the non-Newtonian flow model adopted in classifying coronary lesions. Furthermore, we highlight that the lack of standardization while making FFR measurement might be misleading regarding the significance of stenosis. Copyright © 2020 Keltoum Chahour et al.Background Bushen Tiaojing Decoctions (BSTJ-II-D and BSTJ-III-D) are used to assist pregnancy in clinical practice. In this study, we explored the ability of sequential administration of BSTJ-II-D and BSTJ-III-D to promote cumulus cell (CC) expansion and its underlying mechanisms in controlled ovarian hyperstimulation (COH) mice. Methods Kunming mice were randomly divided into three groups. The normal group was injected intraperitoneally with saline, and distilled water was administered orally by gavage. As the COH model, mice were injected with GnRHa, eCG, and hCG. Subsequently, the BSTJD group received BSTJ-II-D and BSTJ-III-D orally by gavage, while the control group received distilled water. We evaluated CC expansion and oocyte first polar body (PB1) extrusion under a stereomicroscope. Serum levels of follicle-stimulating hormone (FSH) were detected by radioimmunoassay. The expression of the CC expansion-related factors PTX3 and PTGS2 was detected by immunofluorescence, western blot, and quantitative real-time-polymerase chain reaction analyses (qRT-PCR). Expression of p-MAPK14, p-MAPK3/1, MAPK14, and MAPK3/1 was detected by western blot analysis. Results Sequential administration of BSTJ-II-D and BSTJ-III-D promoted cumulus expansion and oocyte PB1 extrusion and upregulated PTX3 and PTGS2 expression at the mRNA and protein levels. Furthermore, the levels of p-MAPK14/MAPK14, p-MAPK3/1/MAPK3/1 proteins, and serum FSH in the BSTJD group were higher than those in the normal and control groups. Conclusions Sequential administration of BSTJ-II-D and BSTJ-III-D promotes cumulus expansion and oocyte maturation in COH mice by increasing FSH expression and activating the MAPK14 and MAPK3/1 signalling pathways, thereby increasing expression of PTX3 and PTGS2. Copyright © 2020 Xiao Liang et al.Although several studies have been performed on Apium graveolens L.(celery) seeds, their antiliver fibrosis effects remain to be unexplored. link3 Firstly, we detected the effects of celery seeds extracted with different concentrations of aqueous ethanol on the proliferation of HSC-LX2 cells. Then, we detected the effects of fractions of the optimal effect extract on the proliferation and apoptosis of HSC-LX2 cells. Finally, the compounds of petroleum ether (PP), ethyl acetate (PE), n-butyl alcohol (PB), and water fractions (PW) of the optimal effect extract were determined by GC-TOF-MS and UHPLC-MS/MS, to confirm the potentially antifibrotic compounds combined with pharmacodynamic experiment of monomer compounds in vitro. The results revealed that 60% ethanol extract of celery seeds (60-extract) exhibited remarkable inhibition effect on the proliferation of HSC-LX2 cells compared with 95% ethanol and aqueous extract. Besides, it validated that the inhibition rates of PP, PE, PB, and PW on the proliferation of HSC-LX2 cells were 75.14%, 73.52%, 54.09%, and 43.36%, and their percentage of apoptotic cells were 37.5%, 4.3%, 0.7%, and 0.1% at high doses, respectively. Additionally, it was manifested that apigenin, aesculetin, and butylphthalide have major contribution to the overall compounds of celery seeds, and the inhibition effects on the cell proliferation clearly elevated with increase in their contents. In essence, apigenin, aesculetin, and butylphthalide may hopefully become the natural products of antiliver fibrosis, which laid a foundation for the subsequent development of celery seeds as antiliver fibrosis drugs. Copyright © 2020 Ming Qiao et al.There has been an increase in morbidity and mortality related to coronary heart disease (CHD) in China in recent years. Numerous clinical experiences and studies have shown that traditional Chinese medicine (TCM) plays an important role in the prevention, treatment, and prognosis of CHD. However, the mechanism of TCM in the treatment of CHD has not yet been elucidated. The circRNA-miRNA-mRNA network consists of miRNA that is competitively bound by circRNA, and miRNA regulates the transcription level of mRNA. Through literature review, we found that the circRNA-miRNA-mRNA network acts to contribute to certain effects to CHD such as myocardial hypertrophy, myocardial fibrosis, and heart failure. TCM contains constituents that act against CHD by antiatherosclerosis and apoptosis inhibition action, cardiac and cardiomyocyte protection, and these components also promote cell growth and protection of the vascular system by regulating miRNAs. Therefore, we consider that the circRNA-miRNA-mRNA network may be a new regulatory mechanism for the effective treatment of CHD by TCM.

Autoři článku: Elliseriksen4861 (Castaneda Engel)