Elgaardmahmoud7917

Z Iurium Wiki

Hybrid materials are increasingly demonstrating their utility across several optical, electrical, and magnetic applications. Cu(I) halide-based hybrids have attracted attention due to their strong luminescence in the absence of rare-earths. Here, we report three Cu(I) and Ag(I) hybrid iodides with 1,5-naphthyridine and additional triphenylphosphine (Ph3P) ligands. The compounds are built on (Cu/Ag)-I staircase chains or on a rhomboid Cu2I2 dimer and display intense and tunable luminescence. Replacing Cu with Ag, and adding the second kind of organic ligand (Ph3P) tunes the emission color from red to yellow and results in significantly enhanced quantum yield. Density functional theory-based electronic structure calculations reveal the separate effects of the inorganic module and organic ligand on the electronic structure, confirming that bandgap, optical absorption, and emission properties of these phosphors can be systemically and deliberately tuned by metal substitution and organic ligands cooperation. The emerging understanding of composition-structure-property relations in this family provides powerful design tools toward new compounds for general lighting applications.Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.Eight new flavonoids, including two β-hydroxy/methoxychalcones, velutones A and B (1 and 2), two 1,3-diarylpropan-1-ols, velutols C and D (3 and 4), a dihydroxychalcone, velutone E (5), a chalcone, velutone F (6), a furanoflavanone, velutone G (7), and a furanoflavonol, velutone H (8), and 14 known compounds were isolated from Millettia velutina. Their structures were determined by high-resolution electrospray ionisation mass spectrometry (HR-ESIMS) and spectroscopic data analyses and time-dependent density functional theory electronic circular dichroism (TD-DFT-ECD) calculations. Among the isolated constituents, compound 6 exhibited the most potent inhibitory effect (IC50 1.3 μM) against nigericin-induced IL-1β release in THP-1 cells. The initial mechanism of action study revealed that compound 6 suppressed NLRP3 inflammasome activation via blocking ASC oligomerization without affecting the priming step, which subsequently inhibited caspase-1 activation and IL-1β secretion. Most importantly, compound 6 exerted potent protective effects in the LPS-induced septic shock mice model by improving the survival rate of mice and suppressing serum IL-1β release. These results demonstrated that compound 6 had the potential to be developed as a broad-spectrum NLRP3 inflammasome inhibitor for the treatment of NLRP3-related disease.Developing acetone gas sensors with high sensitivity is crucially important for many applications including nonevasive diagnosis of diabetes. In the present work, cobalt doping is used to catalyze acetone gas-sensing reactions and hence to promote the sensitivity of acetone gas sensors. In order to achieve this, ZIF-71 metal-organic framework (MOF) is synthesized onto ZnO nanorod arrays with various concentrations of Co doping to form composite ZnO@ZIF-71(Co) sensors, which are then evaluated as sensing materials for acetone detection. Such sensors are shown to be sensitive to a trace amount of acetone (50 ppb) and have a massively enhanced response of about 100 times that for the undoped sensor at an optimal Co/Zn ratio and operating temperature. learn more Fourier-transform infrared spectroscopy and temperature-programmed desorption with density functional theory calculations are also made to assist in elucidating the catalytic gas-sensing mechanism for the Co-doped composite sensors ZnO@ZIF-71(Co). It demonstrated that the introduced Co site in ZIF-71(Co) can activate oxygen catalytically and increase active oxygen released to the ZnO surface. Meanwhile, the Co sites also promote the decomposition of acetone. These two steps together affect the catalytic oxidation of gases and finally enhance the sensitivity. This work introduces the catalytic effect of the MOF into the gas-sensing mechanism and provides an idea for broadening the application of MOF catalysis.Metal-organic frameworks (MOFs) are envisaged as highly useful for the development of biosensors. Herein, for the first time, we report the optical detection of Escherichia coli using a water-dispersible terbium MOF (Tb-BTC; BTC, 1,3,5-benzenetricarboxylic acid). The successful synthesis of Tb-BTC is verified using spectroscopic and morphological techniques like UV-vis, fluorescence and FTIR spectroscopy, X-ray diffraction analysis, and electron microscopy. Tb-BTC has been bio-interfaced with anti-E. coli antibodies and then investigated as a biosensor for E. coli. The biosensor displays detection ability in an analyte concentration range of 1.3 × 102 to 1.3 × 108 cfu/mL with a detection limit of 3 cfu/mL, having a response time of 5 min and a total analysis time of about 20-25 min. The results are also found to be reproducible and specific in the presence of some other interfering bacterial species. As demonstrated, the present sensor provides highly sensitive and specific detection of E. coli in fruit juice sample. To the best of our knowledge, this is the first report to showcase the potential of the MOF-based fluorescent biosensor for the detection of E. coli.Generally, a high-temperature postannealing process is required to enhance the photoelectrochemical (PEC) performance of hematite nanorod (NR) photoanodes. However, the thermal annealing time is limited to a short duration as thermal annealing at high temperatures can result in some critical problems, such as conductivity degradation of the fluorine-doped tin oxide film and deformation of the glass substrate. In this study, selective laser processing is introduced for hematite-based PEC cells as an alternative annealing process. The developed laser-induced phase transformation (LIPT) process yields hematite NRs with enhanced optical, chemical, and electrical properties for application in hematite NR-based PEC cells. Owing to its improved properties, the LIPT-processed hematite NR PEC cell exhibits an enhanced water oxidation performance compared to that processed by the conventional annealing process. As the LIPT process is conducted under ambient conditions, it would be an excellent alternative annealing technique for heat-sensitive flexible substrates in the future.

Cranioplasty is a surgical intervention aiming to re-establish the integrity of skull defects. Autologous bone and different heterologous materials are used for this purpose, with various reported related complications. The aim of the study was to evaluate the complication rate in a multicentric cohort of patients underwent porous hydroxyapatite (PHA) cranioplasty implantation and to assess the validity of company post-market clinical analysis.

Authors analyzed a company based register of 6279 PHA cranioplasty implanted all over the world. In these adult patients only self-reported complications were available. We then obtained the data of adult patients treated with custom-made porous HA prostheses (CustomBone Service) in 20 institutions from different European countries through an on-site interview with the physicians in charge of the patients (494 patients). The endpoints were the incidence of adverse events and of related implant removal.

The groups of patients had similar demographics characterististing finding is that self-reporting complicantions by surgeons does not give a precise picture of the real rate of complications of the devices. These data in future studies need to be re-confirmed with on-site interviews.

Surgical approaches to the third ventricle (TV) have always represented a technical challenge in neurosurgery. Virtual reality (VR) is attaining increasing relevance in training programs and preoperative planning. The aim of this study is to demonstrate the worthwhile mutual contribution of VR simulations and specimen dissections to develop a new surgical approach to the TV.

The transcortical endoportal subchoroidal endoscope-assisted (TEPSEA) approach was planned and simulated thanks to VR (Surgical Theater©, LLC, Cleveland, Ohio), and then implemented on cadaver specimens by using the VBAS portal system (Viewsite™ Brain Access System TC Model, Vycor Medical™ Inc). We assessed anthropometric measurements during VR planning and evaluated surgical operability during anatomical dissections.

Surgical field depths measured between 75.6 and 85.3 mm to mammillary bodies and habenular commissure, which were in mean 20.2 mm away. An 18-mm movement was estimated for 15°-posterior tilting of a 70-mm long VBAS. Excellent exposure and maneuverability were achieved within the TV through a 2.

Autoři článku: Elgaardmahmoud7917 (Lehmann Hewitt)