Ejlersenmatthews8208
Background and Objectives Medial knee osteoarthritis is known to increase the mechanical load on the medial compartment of the knee joint during walking; however, it is not visually understood how much the mechanical load increases nor where in the medial compartment of the knee joint that load is focused. GSK2245840 research buy Therefore, we conducted a simulation study to determine the location and amount of the mechanical load in the medial compartment of the knee joint during the stance phase. Materials and Methods Subject was a patient with right medial knee osteoarthritis. Computed tomography imaging and gait analysis were performed on subject. The CT image of the right knee was calculated using finite element analysis software. Since this software can set the flexion angle arbitrarily while maintaining the nonuniform material properties of the bone region, the model is constructed by matching the knee joint extension image obtained by CT to the loading response phase of gait analysis. The data of muscle exertion tension and vertical ground reaction force were inserted into the knee joint model created from the computed tomography-based finite element method, and the knee joint compressive stress was calculated. Results With regard to compressive stress, the tibia showed high stress at 4.10 to 5.36 N/mm2. The femur showed high stress at 4.00 to 6.48 N/mm2. The joint compressive stress on the medial compartment of the knee joint was found to concentrate on the edge of the medial tibial condyle in the medial knee osteoarthritis subject. Conclusions The measurement method of knee joint compressive stress by computed tomography-based finite element method can visually be a reliable method of measuring joint compressive stress in the medial knee osteoarthritis. This reflects the clinical findings because concentration of stress on the medial knee joint was observed at the medial osteophyte.Protein-energy wasting (PEW) is associated with adverse outcomes in hemodialysis patients. This study compares the simplified creatinine index (SCI) and circulating inflammatory markers as nutritional screening tools for hemodialysis patients. Maintenance hemodialysis patients (230 total patients, 34.8% women, 64.0 ± 14.3 years old) from a tertiary medical center were assessed for demographic data, body composition analysis, biochemistry tests, and circulating inflammatory biomarkers. The SCI was calculated using Canaud's formula. Reduced fat-free mass index (FFMI), a surrogate of lean body mass, was identified according to the European Society for Clinical Nutrition and Metabolism guidelines. Nutritional status was assessed by the geriatric nutritional risk index (GNRI) and International Society of Renal Nutrition and Metabolism (ISRNM) criteria. Multivariate logistic regression revealed independent risk factors for low FFMI and malnutrition. Of the patients, 47.4% had low FFMI. Patients with a reduction in FFMI tended to be older females with lower body mass index, SCI, and GNRI scores but significantly higher levels of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-8. SCI was found to be an independent predictor for reduced FFMI (OR 0.57, 95% CI 0.40-0.81) and presence of PEW according to ISRNM criteria (OR 0.38, 95% CI 0.21-0.68). Although a positive association between systemic inflammatory markers and low FFMI was observed, this association disappeared in multivariate analysis. Moreover, the inflammatory markers examined in this study were not associated with malnutrition after adjusting for potential confounders. Compared with markers of systemic inflammation, SCI achieved better performance in assessing the nutritional status of hemodialysis patients.
Chordoma is a rare bone cancer with an unknown etiology. TBXT is the only chordoma susceptibility gene identified to date; germline single nucleotide variants and copy number variants in TBXT have been associated with chordoma susceptibility in familial and sporadic chordoma. However, the genetic susceptibility of chordoma remains largely unknown. In this study, we investigated rare germline genetic variants in genes involved in TBXT/chordoma-related signaling pathways and other biological processes in chordoma patients from North America and China.
We identified variants that were very rare in general population and internal control datasets and showed evidence for pathogenicity in 265 genes in a whole exome sequencing (WES) dataset of 138 chordoma patients of European ancestry and in a whole genome sequencing (WGS) dataset of 80 Chinese patients with skull base chordoma.
Rare and likely pathogenic variants were identified in 32 of 138 European ancestry patients (23%), including genes that are part of notochord development, PI3K/AKT/mTOR, Sonic Hedgehog, SWI/SNF complex and mesoderm development pathways. Rare pathogenic variants in COL2A1, EXT1, PDK1, LRP2, TBXT and TSC2, among others, were also observed in Chinese patients.
We identified several rare loss-of-function and predicted deleterious missense variants in germline DNA from patients with chordoma, which may influence chordoma predisposition and reflect a complex susceptibility, warranting further investigation in large studies.
We identified several rare loss-of-function and predicted deleterious missense variants in germline DNA from patients with chordoma, which may influence chordoma predisposition and reflect a complex susceptibility, warranting further investigation in large studies.Objectives/Hypothesis It is acknowledged that the treatment of chronic rhinosinusitis (CRS) represents an important challenge for rhinology and for social and economic life. At present, one of the most common treatments for CRS is represented by local corticosteroids followed by endoscopic sinus surgery (ESS). Starting from the example of the mesenchymal stem cell's (MSC) capacity to migrate and to modulate a real response in the nasal mucosa of an allergic rhinitis mouse model, we try to obtain a response in a CRS mouse model, using MSC derived by adipose tissue. The aim of this study is to demonstrate that the MSC can be used in CRS treatment and could change its priorities. Methods Seventy female mice (6 MSC donor mice) were randomized in two stages of study, 32 Aspergillus fumigatus (Af) exposure mice (20 for histological comparison to 1st control mice and 12 for MSC administration, to CRS/MCS model) and 32 control mice (20 for histological comparison to CRS model and 12 for MSC administration and histological control to MSC model); in the first stage, the Aspergillus fumigatus (Af) CRS mouse model was targeted, in this section were included 64 (n = 32) mice (treated and control group).