Ejlersenbrun6590
These data can then be used to derive remotely sensed proxies of canopy and ecosystem function to study temporal forest dynamics over a wide range of wavelengths, spatial scales (individual trees to canopy), and temporal scales (minutes to multiple years). The multi-purpose system is intended to provide unprecedented spatio-temporal ecophysiological insight and to underpin upscaling of remotely sensed dynamic ecosystem water, CO
, and energy exchange processes.
These data can then be used to derive remotely sensed proxies of canopy and ecosystem function to study temporal forest dynamics over a wide range of wavelengths, spatial scales (individual trees to canopy), and temporal scales (minutes to multiple years). The multi-purpose system is intended to provide unprecedented spatio-temporal ecophysiological insight and to underpin upscaling of remotely sensed dynamic ecosystem water, CO2, and energy exchange processes.
Timely and accurate estimates of canopy chlorophyll (Chl) a and b content are crucial for crop growth monitoring and agricultural management. Crop canopy reflectance depends on many factors, which can be divided into the following categories (i) leaf effects (e.g., leaf pigments), (ii) canopy effects (e.g., Leaf Area Index [LAI]), and (iii) soil background reflectance (e.g., soil reflectance). The estimation of leaf variables, such as Chl contents, from reflectance at the canopy scale is usually less accurate than that at the leaf scale. In this study, we propose a Visible and Near-infrared (NIR) Angle Index (VNAI) to estimate the Chl content of soybean canopy, and soybean canopy Chl maps are produced using visible and NIR unmanned aerial vehicle (UAV) remote sensing images. The VNAI is insensitive to LAI and can be used for the multi-stage estimation of crop canopy Chl content.
Eleven previously used vegetation indices (VIs) (e.g., Pigment-specific Normalized Difference Index) were selected for performanusly used VIs. Multi-stage estimations of the Chl content of cropland obtained using the VNAI and broadband remote sensing images may help to obtain Chl maps with high temporal and spatial resolution.
This study was aimed at systematically evaluating the clinical effect and safety of Xiao'er Xiaoji Zhike oral liquid in the treatment of
pneumonia (MPP) in children and providing evidence-based references for clinical application.
The databases like Chinese Biomedical Literature Database, China Network Knowledge Infrastructure, Wan Fang Database, Chinese Scientific Journal Database, PubMed, EmBase, and the Cochrane Library were systematically investigated via searching clinical trials about Xiao'er Xiaoji Zhike oral liquid in treating MPP from the establishment of these databases to Jun 8, 2020, the valid data from which were entered meta-analysis. The quality of evidence was assessed by GRADE criteria.
Totally, 15 trials and 1500 patients were involved in this review. It showed that clinical efficacy of trial group was more superior than control group at the outcome measures of cough disappearance time, lung rale disappearance time, fever subsidence time, total effective rate, lung X-ray infiltratesh rigorous methodology need to be implemented for these potential benefits.Salvia miltiorrhiza injection (SMI) is a classical traditional Chinese medicine, which plays an active role in the treatment of many diseases such as promoting blood circulation, removing blood stasis, reducing inflammatory reaction, and improving acute lung injury (ALI). Previous studies have shown that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in the pathophysiological process of ALI. However, the relationship between SMI and MMPs/TIMPs remains unclear. In this study, Wistar rats were randomly divided into control group (NC), Salvia miltiorrhiza group (SM), lipopolysaccharide group (LPS), and Salvia miltiorrhiza treatment group (Tsm). The four groups were subdivided into four time points (2, 6, 12, and 24 hours), and specimens were collected after animal sacrifice at each time point. Serum TNF-α and IL-6 levels were detected by ELISA. The degree of lung injury was determined by lung tissue hematoxylin-eosin staining, lung wet/dry weight (W/D) ratio, and lung permeability index. The changes in lung MMPs/TIMPs protein and mRNA were detected by Western blot and real-time quantitative PCR. The results showed that rats injected with LPS experience acute lung injury, and the ratio of MMPs/TIMPs in lung tissues increased gradually with time. In the Tsm group, the ratio of MMPs/TIMPs decreased gradually, and likewise, the balance was gradually restored, while indicators related to lung injury were gradually declined. These data suggest that SMI alleviates LPS-induced acute lung injury; this protective effect may be related to regulation of the balance of MMPs/TIMPs ratio.Ulcerative colitis is a major risk factor that increases the occurrence of colorectal cancer. In colorectal cancer due to colitis, intestinal inflammation plays an important role which causes DNA damage. selleck The aim of this study is to investigate the anticancer effect of coelomic fluid of Eisenia fetida (CFEF) and cetuximab combinations. Colitis associated colon cancer was induced in BALB/c mice by DSS/AOM. The mice were randomly divided into six groups group 1 received vehicle (control), groups 2-6 received DSS/AOM, groups 3-5 received cetuximab + CFEF (30, 60, or 120 mg/kgBW), and group 6 received CFEF only. After the 12th week of treatments, the colon tissues were removed for histological examination and immune-fluorescence. Intestinal Epithelial Cells (CECs) were analyzed by flow cytometer. Administration of CFEF significantly decreased the severity of DSS/AOM-induced CAC in a dose-dependent manner. The combinations of CFEF-cetuximab were revealed by histological change. The CFEF significantly reduced the severity scores (P less then 0.05). The combinations of CFEF-cetuximab significantly inhibited K-Ras and vimentin expressions, whereas the percentage of RUNX3 significantly increased in CECs. The increasing of RUNX3 could prevent EMT, so that it can decrease K-Ras and vimentin to suppressed cell invasion and migration by CFEF. Our results suggest that CFEF has the therapeutic potential to CAC.