Egelundgibbons9635

Z Iurium Wiki

The goal of this research was to remove COD, oil and grease (O&G) and color from raw ayurvedic hospital wastewater (AHWW) using a novel electrochemical coagulation (ECC) process. Cell voltage was initially optimized using iron electrodes in bipolar mode for both raw AHWW and ayurvedic hospital therapy room wastewater (AH-TRWW) for a pre-optimized electrolysis time (ET) of 60 min. O&G, COD and color removals for AHWW at 8 V optimized cell voltage were 96, 61 and 96% respectively. Different electrode materials, copper, aluminum, graphite, were used to evaluate relative performances at 8 V. Iron electrodes showed maximum pollutant removal from raw AHWW. The sludge obtained after the ECC process showed good settling and filterability properties compared to graphite and aluminum electrodes. The low SVI value of 146 mL/g was obtained exercising absolute control on sludge volume. Solids flux values showed assurances of compact settling tank design with least spatial footprint. EDX analysis for ECC sludge of AHWW using iron showed gross elements 40.19% C, 48.63% O and 7.92% Fe redefining the fate of sludge. The XRD pattern of the ECC sludge showed an amorphous nature. Post-ECC filtration effluent showed clear water reclamation of 80-82%, proving the effectiveness of the novel ECC treatment process.Iron alginate beads (Fe-Alg) were prepared, characterized and implemented for the degradation of amoxicillin (AMX) by the heterogeneous electro-Fenton process using a graphite cathode recovered from used batteries. Scanning electron microscopy (SEM) showed that (Fe-Alg) beads have a spherical shape and the results of energy dispersive spectrometric (EDS) revealed the presence of iron in (Fe-Alg). Optimization of the operating parameters showed that a complete degradation of AMX was achieved within 90 min of heterogeneous electro-Fenton treatment by operating under these conditions initial AMX concentration 0.0136 mM, I = 600 mA, [Na2SO4] = 50 mM, pH = 3, T = 25 °C, ω = 360 rpm. The corresponding chemical oxygen demand (COD) abatement was 50%. Increasing the contact time increased the COD abatement to 85.71%, after 150 min of heterogeneous electro-Fenton treatment. The results of the kinetic study by using nonlinear methods demonstrated that the reaction of AMX degradation obeyed to a pseudo-second-order kinetic. Iron content of 4.63% w/w was determined by the acid digestion method. After 5 cycles of use, the Alg-Fe catalyst depletion was only 8%. Biodegradability was remarkably improved after electro-Fenton pretreatment, since it increased from 0.07 initially to 0.36. The heterogeneous electro-Fenton process had efficiently eliminated AMX and it increased the biodegradability of the treated solution.This paper presents energy and reliability analyses of eight wastewater treatment plants (WWTPs) operating in small communities in Ontario, Canada, with rated capacities ranging from 60 to 4,400 m3/d. Five different treatment technologies were investigated, namely, rotating biological contactor (RBC), sequencing batch reactor (SBR), membrane bioreactor (MBR), lagoon, and extended aeration activated sludge process (EAAS). Energy benchmarking based on key performance indicators (KPIs) was used to quantify the specific consumption of energy in WWTPs per unit of the pollutant removed. The overall annual electrical energy consumption was correlated to the volume of treated wastewater, the population equivalent, and the amounts of TSS and BOD removed. The RBC plants showed a distinctive advantage for all energy KPIs assessed, while SBR plants yielded the highest values of energy KPIs. Analyses of the expected percentage of compliance with discharge standards and the coefficient of reliability (COR) based on the WWTPs' performance records showed that few WWTPs were able to achieve reliability levels over 95%, considering the mandated discharge standards under the current operating and maintenance conditions. Within each technology, the treatment train, operating conditions, maintenance level, and age of infrastructure were important elements that contributed to the large variability observed.In this study, we investigated using the main composition of pipe deposits from water distribution networks as catalyst to activate dual-oxidant H2O2/Na2S2O8 system to produce radicals for perchloroethylene and chloramphenicol removal. According to the results, the degradation efficiency of perchloroethylene by H2O2/Na2S2O8 system was 92.05% within 8 h. Etrasimod solubility dmso Due to the slow conversion between ≡Fe3+ and ≡Fe2+, the hydroxylamine was introduced to reduce reaction time. As for the results, the degradation efficiency of chloramphenicol in the H2O2/Na2S2O8 system with hydroxylamine assistance was 73.31% within 100 min. Meanwhile, several key affecting factors and the kinetic models were investigated. The primary radicals were identified by electron paramagnetic resonance and radical scavenging tests. Eleven degradation products were confirmed by high-resolution liquid chromatography-mass spectrometry. The result of this study provided the theoretical basis for resource utilization of pipe deposits in water treatment in case of emerging contamination events.The occurrence and removal of 25 antibiotics, including ten quinolones (QNs), four macrolides (MLs), four tetracyclines (TCs) and seven sulfonamides (SNs), were analysed at two sewage treatment plants (STPs) with different treatment units in Guangxi Province, China. The results showed that 14 and 16 antibiotics were detected in the influent of the two STPs, with concentrations ranging from 13.7-4265.2 ng/L and 14.5-10761.7 ng/L, respectively. Among the antibiotics, TCs were the main type in the study area, accounting for more than 79% of the total concentration of all antibiotics. The antibiotic removal efficiencies of the different process units ranged from -56.73% to 100.0%. It was found that the SN removal efficiency of the multistage composite mobile bed membrane bioreactor (MBBR) process was better than that of the continuous-flow Intermission biological reactor (IBR) process, while the IBR process was better than the MBBR process in terms of removing TCs and MLs; however, there was no obvious difference in the QN removal efficiencies of these two processes. Redundancy analysis (RDA) showed a strong correlation between antibiotic concentration and chemical oxygen demand (COD). Risk assessments indicated that algae, followed by invertebrates and fish, were the most sensitive aquatic organisms to the detected antibiotics.In order to improve the stability of nanofiltration membrane in separation and purification, a novel polyelectrolyte multilayer nanofiltration membrane was facilely prepared by co-deposition of polydopamine (PDA) and polyethyleneimine (PEI) on the polyethersulfone (PES) ultrafiltration membrane substrate, followed by immersing graphene oxide (GO) solution, and crosslinking PDA. The modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), water contact angle, their saline flux and ability to reject salt and dye were determined. The results also exhibited salt rejection ability as Na2SO4 > K2SO4 > MgSO4 > NaCl > KCl > MgCl2, suggesting the higher rejection of divalent anion. Also, the retention order of the dye by the GO modified membrane is DY86 > DB19 > AG27 > DY142 > DB56 > AR151 > VB5, indicating that the GO modified membrane has better rejection of negatively charged dyes as well as higher molecular weight dyes. Ethanol and hypochlorite resistance tests under different pH conditions showed the membranes coated GO enhanced stability in regard to salt rejection properties. Significantly, the anti-biological test confirmed the growth rate of microalgae on the GO introduced membrane was decreased greatly due to enhanced stability and lower roughness.The objectives of this study were to (1) assess the intensification of chemical oxygen demand (COD) and phosphate (PO4-P) removal; and (2) generate a set of rate constants of COD degradation (kCOD) and phosphate (kPO4-P) removal for the treatment of industrial wastewater (WW) using intensified adsorption beds. Two horizontal subsurface flow constructed wetlands (HSSFCWs) filled with coal ash and alum sludge and two conventional HSSFCWs packed with gravels were operated with different loadings of COD and PO4-P at a hydraulic retention time (HRT) of 24 hrs at water depth of 0.40 m. The bed performance was analysed for COD and PO4-P removal efficiency. The intensified HSSFCWs outperformed the control beds by a mean COD and PO4-P removal efficiency of 43 and 49%, respectively. The progression of COD and PO4-P removal along the system was fitted into the first-order plug flow model (K-C model). In this study the kCOD values ranged from 0.36 to 0.65 m/d with a mean of 0.46 ± 0.08 m/d (n = 30). The kPO4-P values ranged from 0.74 to 1.76 m/d and averaged to 1.23 ± 0.37 m/d (n = 30), irrespective of the condition applied. Hence, these data can be used for future projects using HSSFCWs to treat industrial wastewater.Ultrafiltration (UF) has been widely applied to water treatment in the past few decades, but severe membrane fouling is one of the most significant obstacles for its further development. In reality, the constituents of feed water are complex, and the fouling behavior could be different from that induced by a single foulant. In this study, the membrane fouling induced by mixed organic foulant (sodium alginate, SA) and inorganic ions under various conditions were investigated. The effects of ion concentration and valence on the combined fouling as well as the rejection performance were examined. The results showed that compared to SA alone, the presence of inorganic ions could aggravate the organic fouling of UF membranes significantly. The fouling became more severe as the ion concentration increased. Also, ions with higher valence tended to exacerbate the fouling compared with monovalent ions. It was also found that the existence of inorganic ions had negligible effects on the rejection of organic molecules, however, the rejection of salts can be improved because of the organic matter. In addition, the analysis of the classic fouling models showed that the complete blocking model is the main fouling mechanism of the mixed SA and inorganic salts.To analyze the effect of flow characteristics on electrochemical water softening, characteristics of flow fields in the vicinity of vertical plate electrodes in a bench-scale electrolysis cell for electrochemical water softening were visualized using particle image velocimetry technology, and the hardness drop values under different process conditions were measured. Properly increasing the current density or reducing the electrode spacing can increase the average flow velocity in the electrode gap. Excessive current density will cause bubble accumulation, form a bubble vortex, interfere with the orderly flow of surrounding liquid and reduce mass transfer efficiency. When the electrode spacing is 120 mm, the highest water softening efficiency measured at the current density of 60 A/m2 is 16.56%. When the current density is 50 A/m2, the highest average speed measured at the electrode spacing of 60 mm is 0.00169 m/s, but the highest water softening efficiency measured at the electrode spacing of 90 mm is 23.3%.The circulation efficiency in the electrode gap of a semi-closed structure is lower than that of a free convection structure.

Autoři článku: Egelundgibbons9635 (Raahauge Bolton)