Edwardsglerup9738

Z Iurium Wiki

603), and was higher in the higher-dose condition (p = 0.012). Symptom severity was not decreased from placebo with lower-dose stinging nettle (p = 0.604), but was significantly decreased with higher-dose stinging nettle (p = 0.048). Epimedium showed no significant decreases of GWI symptoms in the lower (p = 0.936) or higher (p = 0.183) dose conditions. Stinging nettle, especially at higher daily dosages, may help reduce the symptoms of GWI. Epimedium does not appear to beneficially affect GWI symptom severity, and reishi may exaggerate symptoms in some GWI sufferers. These results are in a small sample and are preliminary. Further research is required to determine if stinging nettle is indeed helpful for the treatment of GWI, and what dosage is optimal. This trial was registered on ClinicalTrials.gov (NCT02909686).The aim of this work was to improve the growth characteristics of Murciano-Granadina (MG) kids through terminal crossbreeding of MG goats to Boer bucks. Four experiments were carried out, using a total of 354 MG goats, half of which were mated with MG bucks (n = 12) and the other half with Boer bucks (n = 12). The kids were raised in artificial rearing until slaughter weight (9 kg). The birth weight and average daily gain were recorded in crossed kids (n = 197 and 145, respectively) and purebred kids (n = 257 and 169, respectively). Crossed kids presented significant differences (p less then 0.001) compared to MG purebred kids in birth weight (+ 24%), mortality in artificial rearing (-37%), average daily gain (+32%) and milk powder conversion rate (-16%). However, the reproductive performance rates of MG goats mated with Boer bucks were slightly worse (pregnancy rate 78.5% vs. 86.6%, p less then 0.05; kidding rate 62.0% vs. 75.7%; p less then 0.01; prolificacy 1.9 vs. 2.1 kids/parturition), especially when the matings took place in non-breeding season (experiments conducted at latitude 38-39° N). It is concluded that the terminal crossbreeding of MG goats to Boer bucks (those not used to produce replacement kids) could be an interesting option for ethical goat production.Hippocampus atrophy is an early structural feature that can be measured from magnetic resonance imaging (MRI) to improve the diagnosis of neurological diseases. An accurate and robust standardized hippocampus segmentation method is required for reliable atrophy assessment. The aim of this work was to develop and evaluate an automatic segmentation tool (DeepHarp) for hippocampus delineation according to the ADNI harmonized hippocampal protocol (HarP). DeepHarp utilizes a two-step process. First, the approximate location of the hippocampus is identified in T1-weighted MRI datasets using an atlas-based approach, which is used to crop the images to a region-of-interest (ROI) containing the hippocampus. PF-04691502 purchase In the second step, a convolutional neural network trained using datasets with corresponding manual hippocampus annotations is used to segment the hippocampus from the cropped ROI. The proposed method was developed and validated using 107 datasets with manually segmented hippocampi according to the ADNI-HarP standard as well as 114 multi-center datasets of patients with Alzheimer's disease, mild cognitive impairment, cerebrovascular disease, and healthy controls. Twenty-three independent datasets manually segmented according to the ADNI-HarP protocol were used for testing to assess the accuracy, while an independent test-retest dataset was used to assess precision. The proposed DeepHarp method achieved a mean Dice similarity score of 0.88, which was significantly better than four other established hippocampus segmentation methods used for comparison. At the same time, the proposed method also achieved a high test-retest precision (mean Dice score 0.95). In conclusion, DeepHarp can automatically segment the hippocampus from T1-weighted MRI datasets according to the ADNI-HarP protocol with high accuracy and robustness, which can aid atrophy measurements in a variety of pathologies.Ultra-wide band (UWB) based local positioning systems (LPS) are based on devices and a portable antenna set. The optimal installation height of the antennae is crucial to ensure data accuracy. Collective variables are metrics that consider at least two pairs of coordinates, which may lead to lower precision than an individual one. Therefore, the aim of this study was to compare the influence of antenna height with collective metrics using a UWB (i.e., IMU; WIMU PRO™, RealTrack Systems, Almeria, Spain) based LPS. Data acquisition was carried out in a basketball court measuring 28 × 15 m. Five devices were used; one of which was carried by a healthy and well-trained athlete (age 38 years, mass 76.34 kg, height 1.70 m), while each of the remaining four was positioned on a tripod in one of the four corners of the court. Four kinds of variables were extracted (1) static distances, (2) dynamic distances, (3) static areas and (4) dynamic areas in all antenna installation modes of 0.15, 1.30 and 2.00 m. The results showed that the antenna of 1.30 m provided better accuracy for all measures (% difference range from -0.94 to 1.17%) followed by the antenna of 2.00 m (% difference range from -2.50 to 2.15%), with the antenna of 0.15 m providing the worst accuracy level (% difference range from -1.05 to 3.28%). Overall, the measurements of distance metrics showed greater accuracy than area metrics (distance % difference range from -0.85 to 2.81% and area % difference range from -2.50 to 3.28). In conclusion, the height of the antennae in basketball courts should be similar to the height at which the devices are attached to a player's upper back. However, as the precision is sensitive to the magnitude of the measure, further studies should assess the effects of the relative height of antennae in team sports with greater playing spaces.Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.During death investigations insects are used mostly to estimate the post-mortem interval (PMI). These estimates are only as good as they are close to the true PMI. Therefore, the major challenge for forensic entomology is to reduce the estimation inaccuracy. Here, I review literature in this field to identify research areas that may contribute to the increase in the accuracy of PMI estimation. I conclude that research on the development and succession of carrion insects, thermogenesis in aggregations of their larvae and error rates of the PMI estimation protocols should be prioritized. Challenges of educational and promotional nature are discussed as well, particularly in relation to the collection of insect evidence.Neuroblastoma (NB) is an aggressive infancy tumor, leading cause of death among preschool age diseases. Here we focused on characterization of exosomal DNA (exo-DNA) isolated from plasma cell-derived exosomes of neuroblastoma patients, and its potential use for detection of somatic mutations present in the parental tumor cells. Exosomes are small extracellular membrane vesicles secreted by most cells, playing an important role in intercellular communications. Using an enzymatic method, we provided evidence for the presence of double-stranded DNA in the NB exosomes. Moreover, by whole exome sequencing, we demonstrated that NB exo-DNA represents the entire exome and that it carries tumor-specific genetic mutations, including those occurring on known oncogenes and tumor suppressor genes in neuroblastoma (ALK, CHD5, SHANK2, PHOX2B, TERT, FGFR1, and BRAF). NB exo-DNA can be useful to identify variants responsible for acquired resistance, such as mutations of ALK, TP53, and RAS/MAPK genes that appear in relapsed patients. The possibility to isolate and to enrich NB derived exosomes from plasma using surface markers, and the quick and easy extraction of exo-DNA, gives this methodology a translational potential in the clinic. Exo-DNA can be an attractive non-invasive biomarker for NB molecular diagnostic, especially when tissue biopsy cannot be easily available.Increasing interest in bio-based polymers and fibers has led to the development of several alternatives to conventional plastics and fibers made of these materials. Biopolymer fibers can be made from renewable, environmentally friendly resources and can be fully biodegradable. Biogenic resources with a high content of carbohydrates such as starch-containing plants have huge potentials to substitute conventional synthetic plastics in a number of applications. Much literature is available on the production and modification of starch-based fibers and blends of starch with other polymers. Chemistry and structure-property relationships of starch show that it can be used as an attractive source of raw material which can be exploited for conversion into a number of high-value bio-based products. In this review, possible spinning techniques for the development of virgin starch or starch/polymer blend fibers and their products are discussed. Beneficiation of starch for the development of bio-based fibers can result in the sustainable replacement of oil-based high-value materials with cost-effective, environmentally friendly, and abundant products.Thymic tumors are a group of rare mediastinal malignancies that include three different histological subtypes with completely different clinical behavior the thymic carcinomas, the thymomas, and the rarest thymic neuroendocrine tumors. Nowadays, few therapeutic options are available for relapsed and refractory thymic tumors after a first-line platinum-based chemotherapy. In the last years, the deepening of knowledge on thymus' biological characterization has opened possibilities for new treatment options. Several clinical trials have been conducted, the majority with disappointing results mainly due to inaccurate patient selection, but recently some encouraging results have been presented. In this review, we summarize the molecular alterations observed in thymic tumors, underlying the great biological differences among the different histology, and the promising targeted therapies for the future.

Autoři článku: Edwardsglerup9738 (May Dalton)