Durhammalone1450

Z Iurium Wiki

Edge information is essential for object recognition and motion detection. It is reported that photoreceptors, horizontal cells and bipolar cells in the outer retina involved for edge detection. Moreover, it is known that the center and the surround receptive field structure found in the bipolar cell layer is thought to be related to an initial process of edge detection. In the present study, we constructed retinal network models including photoreceptors, horizontal cells, and bipolar cells using single-compartment neurons to investigate those contributions for edge detection. We simulate fixation of a natural image with changing the size of the horizontal cell receptive field and confirmed that the constructed model successfully extracts edges in the image. Furthermore, most of the edge in the scene is extracted when the size of the horizontal cell receptive field matched with that reported in anatomical evidence. To evaluate the performance of edge detection, we compare the result of edge detection with the Canny algorithm. As a result, we conformed that the model well detects fine edges similar to the Canny edge detection.Closed-loop controlled drug dosing has the potential of revolutionizing clinical anesthesia. However, inter-patient variability in drug sensitivity poses a central challenge to the synthesis of safe controllers. Identifying a full individual pharmacokinetic-pharmacodynamic (PKPD) model for this synthesis is clinically infeasible due to limited excitation of PKPD dynamics and presence of unmodeled disturbances. This work presents a novel method to mitigate inter-patient variability. It is based on 1) partitioning an a priori known model set into subsets; 2) synthesizing an optimal robust controller for each subset; 3) classifying patients into one of the subsets online based on demographic or induction phase data; 4) applying the associated closed-loop controller. The method is investigated in a simulation study, utilizing a set of 47 clinically obtained patient models. Results are presented and discussed.Clinical relevance-The proposed method is easy to implement in clinical practice, and has potential to reduce the impact from surgical stimulation disturbances, and to result in safer closed-loop anesthesia with less risk of under- and over dosing.Automatic electrocardiogram (ECG) analysis for pacemaker patients is crucial for monitoring cardiac conditions and the effectiveness of cardiac resynchronization treatment. However, under the condition of energy-saving remote monitoring, the low-sampling-rate issue of an ECG device can lead to the miss detection of pacemaker spikes as well as incorrect analysis on paced rhythm and non-paced arrhythmias. To solve the issue, this paper proposed a novel system that applies the compressive sampling (CS) framework to sub-Nyquist acquire and reconstruct ECG, and then uses multi-dimensional feature-based deep learning to identify paced rhythm and non-paced arrhythmias. Simulation testing results on ECG databases and comparison with existing approaches demonstrate its effectiveness and outstanding performance for pacemaker ECG analysis.Bundle branch block (BBB) is one of the most common cardiac disorder, and can be detected by electro-cardiogram (ECG) signal in clinical practice. Conventional methods adopted some kinds of hand-craft features, whose discriminative power is relatively low. On the other hand, these methods were based on the supervised learning, which required the high cost heartbeat annotation in the training. In this paper, a novel end-to-end deep network was proposed to classify three types of heartbeat right BBB (RBBB), left BBB (LBBB) and others with a multiple instance learning based training strategy. We trained the proposed method on the China Physiological Signal Challenge 2018 database (CPSC) and tested on the MIT-BIH Arrhythmia database (AR). The proposed method achieved an accuracy of 78.58%, and sensitivity of 84.78% (LBBB), 51.23% (others) and 99.72% (RBBB), better than the baseline methods. selleck chemicals llc Experimental results show that our method would be a good choice for the BBB classification on the ECG dataset with record-level labels instead of heartbeat annotations.Premature ventricular contraction (PVC) is associated to the risk of ventricular dysfunction and cardiovascular events. Its diagnosis depends on a long-time monitoring, and computational tools for PVC recognition can provide significant assistance to specialists. For this purpose, we present an automatic algorithm for the recognition PVC beat based on long-term 12-lead ECG.A total of 249 patients with PVC were included in this study. Initially, a novel QRS onset detection function was used to automatically extract QRS complexes from massive original ECG data. Then, non-personalized but shared QRS-width features of 12-lead QRS complexes were extracted and fed to a binary classifier based on SVM. In order to verify the model, 17, 512 normal beats and 17, 690 PVC beats extracted from 35 patients were used for training, and another 215 normal beats and 291 PVC beats selected randomly from the remaining 214 patients were used for testing.As a result, the achieved accuracy, sensitivity, specificity in training data and testing data are 98.9%, 98.3%, 99.5% and 97.2%, 97.7%, 96.7%, respectively. The high accuracy of PVC recognition makes it promising to be an efficient technique being used in clinical settings to automatically analyze huge ECG data so as to replace the tedious manual interpretation.Automatic detection of R-peaks in an Electrocardiogram signal is crucial in a multitude of applications including Heart Rate Variability (HRV) analysis and Cardio Vascular Disease(CVD) diagnosis. Although there have been numerous approaches that have successfully addressed the problem, there has been a notable dip in the performance of these existing detectors on ECG episodes that contain noise and HRV Irregulates. On the other hand, Deep Learning(DL) based methods have shown to be adept at modelling data that contain noise. In image to image translation, Unet is the fundamental block in many of the networks. In this work, a novel application of the Unet combined with Inception and Residual blocks is proposed to perform the extraction of R-peaks from an ECG. Furthermore, the problem formulation also robustly deals with issues of variability and sparsity of ECG R-peaks. The proposed network was trained on a database containing ECG episodes that have CVD and was tested against three traditional ECG detectors on a validation set. The model achieved an F1 score of 0.9837, which is a substantial improvement over the other beat detectors. Furthermore, the model was also evaluated on three other databases. The proposed network achieved high F1 scores across all datasets which established its generalizing capacity. Additionally, a thorough analysis of the model's performance in the presence of different levels of noise was carried out.In clinical practice, heart arrhythmias are manually diagnosed by a doctor, which is a time-consuming process. Furthermore, this process is error-prone due to noise from the recording equipment and biological non-idealities of patients. Thus, an automated arrhythmia classifier would be time and cost-effective as well as offer better generalization across patients. In this paper, we propose an adversarial multitask learning method to improve the generalization of heartbeat arrythmia classification. We built an end-to-end deep neural network (DNN) system consisting of three sub-networks; a generator, a heartbeat-type discriminator, and a subject (or patient) discriminator. Each of these two discriminators had its own loss function to control its impact. The generator was "friendly" to the heartbeat-type discrimination task by minimizing its loss function and "hostile" to the subject discrimination task by maximizing its loss function. The network was trained using raw ECG signals to discriminate between five types of heartbeats - normal heartbeats, right bundle branch blocks (RBBB), premature ventricular contractions (PVC), paced beats (PB) and fusion of ventricular and normal beats (FVN). The method was tested with the MIT-BIH arrhythmia dataset and achieved a 17% reduction in classification error compared to a baseline using a fully-connected DNN classifier.Clinical Relevance-This work validates that it is possible to develop a subject-independent automated heart arrhythmia detection system to assist clinicians in the diagnosis process.In this paper, we propose a technique for detection of premature ventricular complexes (PVC) based on information obtained from single-lead electrocardiogram (ECG) signals. A combination of semisupervised autoencoders and Random Forests models are used for feature extraction and PVC detection. The ECG signal is first denoised using Stationary Wavelet Transforms and denoising convolutional autoencoders. Following this, PVC classification is performed. Individual ECG beat segments along with features derived from three consecutive beats are used to train a hybrid autoencoder network to learn class-specific beat encodings. These encodings, along with the beat-triplet features, are then input to a Random Forests classifier for final PVC classification. Results The performance of our algorithm was evaluated on ECG records in the MIT-BIH Arrhythmia Database (MITDB) and the St. Petersburg INCART Database (INCARTDB). Our algorithm achieves a sensitivity of 92.67% and a PPV of 95.58% on the MITDB database. Similarly, a sensitivity of 88.08% and a PPV of 94.76% are achieved on the INCARTDB database.Electrocardiogram (ECG) signal is the most commonly used non-invasive tool in the assessment of cardiovascular diseases. Segmentation of the ECG signal to locate its constitutive waves, in particular the R-peaks, is a key step in ECG processing and analysis. Over the years, several segmentation and QRS complex detection algorithms have been proposed with different features; however, their performance highly depends on applying preprocessing steps which makes them unreliable in realtime data analysis of ambulatory care settings and remote monitoring systems, where the collected data is highly noisy. Moreover, some issues still remain with the current algorithms in regard to the diverse morphological categories for the ECG signal and their high computation cost. In this paper, we introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of Rpeak positions without employing any preprocessing step. The proposed model guarantees to compute the globally optimal changepoint detection solution. It is also generic in nature and can be applied to other time-series biomedical signals. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55 which are comparable to other state-of-the-art approaches.12.One of the main challenges in sparse signal recovery in compressed sensing framework is determining the sparsity order. Most model order selection methods introduce a penalty term for the number of parameters, however do not consider the variance of the observation and measurement noise. Minimum Noiseless Description Length (MNDL), on the other hand, considers these factors and provides a more robust results in order selection. Nevertheless, it requires noise variance (equivalently SNR) estimate for the order selection procedure. In this paper, a new method is introduced to estimate the variance of the observation noise within the MNDL order selection method. The fully automated method simultaneously provides the SNR estimate and sparsity order and does not require any prior partial knowledge or assumption on the noise variance. Simulation results for ECG compression show advantages of the proposed automated MNDL over the existing approaches in the sense of parameter estimation error and SNR improvement.

Autoři článku: Durhammalone1450 (Odom Camp)