Dupontgoff5416
ent. It became similar over time.Hepatectomy is a main therapeutic strategy for hepatocellular carcinoma (HCC), which requires removal of primary and disseminated tumors and maximum preservation of normal liver tissue. However, in a clinical operation, it is difficult to recognize the tumor tissue and its boundary with the naked eye and palpation, which often leads to insufficient or excessive resection. Near-infrared fluorescence (NIRF) imaging, a non-invasive, real-time, low-cost, and highly sensitive imaging technique has been extensively studied in surgical navigation. With the development of fluorescence imaging system and fluorescent probe, intraoperative tumor detection and margin definition can be achieved, making the operation more accurate. Advances in fluorescence imaging of HCC in the NIR region have focused on the traditional first NIR window (NIR-I, 700-900 nm), and have recently been extended to the second NIR window (NIR-II, 1,000-1,700 nm). read more Compared with NIR-I imaging, fluorescence imaging in the NIR-II exhibits great advantages, including higher spatial resolution, deeper penetration depth, and lower optical absorption and scattering from biological substrates with minimal tissue autofluorescence. There is no doubt that developing novel NIRF probes for in vivo imaging of HCC has high significance and direct impact on the field of liver surgery. In this article, the development of various NIRF probes for fluorescence image guided HCC hepatectomy is reviewed, and current challenges and potential opportunities of these imaging probes are discussed.In 1939, Robinson and Brucer first proposed the concept of prehypertension (PHTN), which was defined as a systolic blood pressure of 120-139 mmHg and/or diastolic blood pressure of 80-89 mmHg. PHTN is a major global health risk that adversely affects human health, especially the cardiovascular system. People with PHTN have a higher risk of developing cardiovascular diseases, including stroke, coronary heart disease, myocardial infarction and total cardiovascular events. However, there are few systematic summaries of the relationship between PHTN and the cardiovascular system. Furthermore, because the definition of 'normal BP' and the advantages of more intensive BP control remain unclear, there is no consensus on optimal interventions. In an attempt to provide information for clinicians or professionals who are interested in reducing the risk associated with PHTN, we review the existing studies to provide references for them with the effects of PHTN on the cardiovascular system and the potential pathogenic mechanisms of PHTN, including inflammatory responses, insulin resistance, endothelial dysfunction, sympathovagal imbalance, activation of the renin-angiotensin system and others. PHTN is highly prevalent and has adverse effects on health. An effective public health strategy is important to prevent the progression of PHTN. We envisage that this information will increase the public attention of PHTN and help to provide more strategies to reduce the risk of cardiovascular events.Three-dimensional (3D) reconstruction and finite element analysis (FEA) have been extensively used to simulate cervical biomechanics. However, instructive articles providing full descriptions for operating Mimics software, Geomagic software, and FEA are rare in the literature. This omission has hindered research and development related to cervical spine biomechanics. Herein, we expound a detailed and easily understandable protocol for performing a digital biomechanics study which may facilitate a better understanding of the internal anatomy mechanics and the investigation of novel screw fixation techniques. We describe step-by-step instructions for use of Mimics and Geomagic software in FEA, along with a concise literature review. The key procedures of digital FEA stepwise instruction are presented, accompanied by a brief but complete report on the computed tomography (CT) imaging data for establishing the final finite element model. Previous publications regarding the commonly used software are also reviewed and discussed. Each piece of software performs a specific function for digital FEA establishment and each has its inherent shortcomings, making it is necessary to combine the software to leverage the advantages of each in order to best serve finite element research. For reasons of brevity, this study only provides an illustrative report on a small key part of finite element research in the cervical spine. These stepwise instructions can guide orthopedic researchers in conducting FEA studies in digital cervical biomechanics.
This study aimed to explore the molecular mechanism of mild hypothermia in in the treatment of cerebral ischemia, microRNA (miRNA) microarrays and bioinformatics analysis were employed to examine the miRNA expression profiles of rats with mild therapeutic hypothermia after middle cerebral artery occlusion (MCAO).
MCAO was induced in Male Sprague-Dawley rats. Mild hypothermia treatment began from the onset of ischemia and maintained for 3 hours. miRNA expressions following focal cerebral ischemia and mild hypothermia treatment were profiled using microarray technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the functions of the target genes in mild therapeutic hypothermia after MCAO. 60 min before MCAO, mimics and inhibitor of miR-291b were injected into the right lateral ventricle respectively, then the infarct volume and neuronal apoptosis were analyzed.
Six upregulated miRNAs and 6 downregulated miRNAs were detected 4 hours after mild therapeutic hypand function of miRNAs would help to illuminate the mechanism of mild therapeutic hypothermia in cerebral ischemia/reperfusion injury.
A number of models have been built to evaluate risk in patients with acute coronary syndrome (ACS). However, accurate prediction of mortality at early medical contact is difficult. This study sought to develop and validate a risk score to predict in-hospital mortality among patients with ACS using variables available at early medical contact.
A total of 62,546 unselected ACS patients from 150 tertiary hospitals who were admitted between 2014 and 2017 and enrolled in the Improving Care for Cardiovascular Disease in China-Acute Coronary Syndrome (CCC-ACS) project, were randomly assigned (at a ratio of 73) to a training dataset (n=43,774) and a validation dataset (n=18,772). Based on the identified predictors which were available prior to any blood test, a new point-based risk score for in-hospital death, CCC-ACS score, was derived and validated. The CCC-ACS score was then compared with Global Registry of Acute Coronary Events (GRACE) risk score.
The in-hospital mortality rate was 1.9% in both the training and validation datasets.