Duncanleon8410

Z Iurium Wiki

In contrast, the other group of blends still partly maintain their respective micro domains, forming a weak interface and leading to a decreased of elongation at break.A time-temperature-transformation-viscosity (TTT-η) diagram can reflect changes in the physical states of a resin, which take on significance for the study of the curing process of polyurethane resin lenses. Coupling the differential scanning calorimetry (DSC) test, the curing kinetic parameters of 1,4-bis(isocyanatomethyl)cyclohexane (H6XDI)/2,3-bis((2-mercaptoethyl)thio)-1-propanethiol (BES) polyurethane system were obtained. By phenomenological modeling, the relationships between degree, temperature, and time were obtained. An isothermal DSC test was carried out at 423 K. Based on the DiBenedetto equation, the relationships between glass transition temperature, degree of cure, and time were obtained, and the glass transition temperature was thus correlated with temperature and time. The gelation time at different temperatures was measured by rotary rheometry, and the relationship between gelation time and gelation temperature was established. The time-temperature-transformation (TTT) diagram of H6XDI/BES system was constructed accordingly. Subsequently, a six-parameter double Arrhenius equation was used as the basis for the rheological study. The viscosity was examined during the curing process. The TTT-η diagram was obtained, which laid the theoretical foundation for the optimization and setting of processing parameters.There is a gap in the literature for the preparation of agar-xanthan gum-carboxymethyl cellulose-based films by thermo compression methods. The present work aims to fill this gap by blending the polysaccharides in a plastograph and preparation of films under high pressure and temperature for a short duration of time. The pivotal aim of this work is also to know the effect of different mixing conditions on the physical, chemical, mechanical and thermal properties of the films. The films are assessed based on results from microscopic, infrared spectroscopic, permeability (WVTR), transmittance, mechanical, rheological and thermogravimetric analysis. The results revealed that the mixing volume and mixing duration had negative effects on the films' transparency. WVTR was independent of the mixing conditions and ranged between 1078 and 1082 g/m2·d. The mixing RPM and mixing duration had a positive effect on the film tensile strength. The films from the blends mixed at higher RPM for a longer time gave elongation percentage up to 78%. Blending also altered the crystallinity and thermal behavior of the polysaccharides. The blend prepared at 80 RPM for 7 min and pressed at 140 °C showed better percent elongation and light barrier properties.Despite recent successes in incorporating lignin into photoactive resins, lignin photo-properties can be detrimental to its application in UV-curable photopolymers, especially in specialized engineered resins for use in stereolithography printing. We report on chemical modification techniques employed to reduce UV absorption by lignin and the resulting mechanical, thermal, and cure properties of these modified lignin materials. Lignin was modified using reduction and acylation reactions and incorporated into a 3D printable resin formulation. UV-Vis absorption at the 3D printing range of 405 nm was reduced in all modified lignins compared to the unmodified sample by 25% to ≥ 60%. Resins made with the modified lignins showed an increase in stiffness and strength with lower thermal stability. Studying these techniques is an important step in developing lignin for use in UV-curing applications and further the effort to valorize lignin towards commercial use.Core-shell particles are very well known for their unique features. Their distinctive inner core and outer shell structure allowed promising biomedical applications at both nanometer and micrometer scales. The primary role of core-shell particles is to deliver the loaded drugs as they are capable of sequence-controlled release and provide protection of drugs. Among other biomedical polymers, poly (lactic-co-glycolic acid) (PLGA), a food and drug administration (FDA)-approved polymer, has been recognized for the vehicle material. This review introduces PLGA core-shell nano/microparticles and summarizes various drug-delivery systems based on these particles for cancer therapy and tissue regeneration. Tissue regeneration mainly includes bone, cartilage, and periodontal regeneration.The success of the regenerative process resulting from the implantation of a scaffold or a tissue-engineered structure into damaged tissues depends on a series of factors, including, crucially, the biodegradability of the implanted materials. The selection of a scaffold with appropriate biodegradation characteristics allows for synchronization of the degradation of the construct with the processes involved in new tissue formation. Thus, it is extremely important to characterize the biodegradation properties of potential scaffold materials at the stage of in vitro studies. We have analyzed the biodegradation of hybrid fibrin-collagen scaffolds in both PBS solution and in trypsin solution and this has enabled us to describe the processes of both their passive and enzymatic degradation. It was found that the specific origin of the collagen used to form part of the hybrid scaffolds could have a significant effect on the nature of the biodegradation process. It was also established, during comparative studies of acellular scaffolds and scaffolds containing stem cells, that the cells, too, make a significant contribution to changes in the biodegradation and structural properties of such scaffolds. The study results also provided evidence indicating the dependency between the pre-cultivation period for the cellular scaffolds and the speed and extent of their subsequent biodegradation. Our discussion of results includes an attempt to explain the mechanisms of the changes found. We hope that the said results will make a significant contribution to the understanding of the processes affecting the differences in the biodegradation properties of hybrid, biopolymer, and hydrogel scaffolds.The aim of this in vitro study was to analyse the performance of CAD/CAM resin-based composites for the fabrication of long-term temporary fixed dental prostheses (FDP) and to compare it to other commercially available alternative materials regarding its long-term stability. Four CAD/CAM materials [Structur CAD (SC), VITA CAD-Temp (CT), Grandio disc (GD), and Lava Esthetic (LE)] and two direct RBCs [(Structur 3 (S3) and LuxaCrown (LC)] were used to fabricate three-unit FDPs. 10/20 FDPs were subjected to thermal cycling and mechanical loading by chewing simulation and 10/20 FDPs were stored in distilled water. Two FDPs of each material were forwarded to additional image diagnostics prior and after chewing simulation. Fracture loads were measured and data were statistically analysed. SC is suitable for use as a long-term temporary (two years) three-unit FDP. In comparison to CT, SC featured significantly higher breaking forces (SC > 800 N; CT less then 600 N) and the surface wear of the antagonists was (significantly) lower and the abrasion of the FDP was similar. The high breaking forces (1100-1327 N) of GD and the small difference compared to LE regarding flexural strength showed that the material might be used for the fabrication of three-unit FDPs. With the exception of S3, all analysed direct or indirect materials are suitable for the fabrication of temporary FDPs.This study investigated the adsorption capacity of one material based on the treatment of fly ash with sodium hydroxide as a novel adsorbent for toxic Cu2+ ion removal from aqueous media. The adsorbent was obtained through direct activation of fly ash with 2M NaOH at 90 °C and 6 h of contact time. The adsorbent was characterized by recognized techniques for solid samples. The influence of adsorption parameters such as adsorbent dose, copper initial concentration and contact time was analyzed in order to establish the best adsorption conditions. The results revealed that the Langmuir model fitted with the copper adsorption data. The maximum copper adsorption capacity was 53.5 mg/g. The adsorption process followed the pseudo-second-order kinetic model. The results indicated that the mechanism of adsorption was chemisorption. The results also showed the copper ion removal efficiencies of the synthesized adsorbents. The proposed procedure is an innovative and economical method, which can be used for toxicity reduction by capitalizing on abundant solid waste and treatment wastewater.As an alternative to common perfluorosulfonic acid-based polyelectrolytes, we present the synthesis and characterization of proton exchange membranes based on two different concepts (i) Covalently bound multiblock-co-ionomers with a nanophase-separated structure exhibit tunable properties depending on hydrophilic and hydrophobic components' ratios. Here, the blocks were synthesized individually via step-growth polycondensation from either partially fluorinated or sulfonated aromatic monomers. (ii) Ionically crosslinked blend membranes of partially fluorinated polybenzimidazole and pyridine side-chain-modified polysulfones combine the hydrophilic component's high proton conductivities with high mechanical stability established by the hydrophobic components. In addition to the polymer synthesis, membrane preparation, and thorough characterization of the obtained materials, hydrogen permeability is determined using linear sweep voltammetry. Furthermore, initial in situ tests in a PEM electrolysis cell show promising cell performance, which can be increased by optimizing electrodes with regard to binders for the respective membrane material.Polymerized ionic liquids (PILs) are interesting new materials in sustainable technologies for energy storage and for gas sensor devices, and they provide high ion conductivity as solid polymer electrolytes in batteries. We introduce here the effect of polar protic (aqueous) and polar aprotic (propylene carbonate, PC) electrolytes, with the same concentration of lithium bis(trifluoromethane) sulfonimide (LiTFSI) on hydrophobic PIL films. Cyclic voltammetry, scanning ionic conductance microscopy and square wave voltammetry were performed, revealing that the PIL films had better electroactivity in the aqueous electrolyte and three times higher ion conductivity was obtained from electrochemical impedance spectroscopy measurements. Their energy storage capability was investigated with chronopotentiometric measurements, and it revealed 1.6 times higher specific capacitance in the aqueous electrolyte as well as novel sensor properties regarding the applied solvents. The PIL films were characterized with scanning electron microscopy, energy dispersive X-ray, FTIR and solid state nuclear magnetic resonance spectroscopy.Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human-machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures. This work is based on the use of a three-dimensional elastic porous carbon nanotubes (CNTs) sponge as the conductive layer to fabricate a novel flexible piezoresistive sensor. The synthesis of a CNTs sponge was achieved by chemical vapor deposition, the basic underlying principle governing the sensing behavior of the CNTs sponge-based pressure sensor and was illustrated by employing in situ scanning electron microscopy. The CNTs sponge-based sensor has a quick response time of ~105 ms, a high sensitivity extending across a broad pressure range (less than 10 kPa for 809 kPa-1) and possesses an outstanding permanence over 4000 cycles.

Autoři článku: Duncanleon8410 (Hertz Lindahl)