Driscollhogan0887

Z Iurium Wiki

Three-dimensional (3D) freehand ultrasound (US) imaging has been applied to the investigation of spine deformity. However, it is a challenge for the current 3D imaging reconstruction algorithms to achieve a balance between image quality and computation time. The objectives of this paper are to implement a new fast reconstruction algorithm which can fulfill the request of immediate demonstration and processing for high-quality 3D spine imaging, and to evaluate the reliability and accuracy of scoliotic curvature measurement when using the algorithm. The Fast Dot-Projection (FDP) algorithm was applied for Voxel-based Nearest Neighbor (VNN), Multiple Plane Interpolation (MPI) and Pixel Nearest Neighbor (PNN) protocols to reduce the reconstruction time. The 3D image volume was reconstructed from the data sets acquired from scoliotic subjects. The computational cost, image characteristics and statistical analyses of curve measurements were compared and evaluated among different reconstruction protocols. The results illustrated that the 3D spine images using the FDP-MPI4 algorithm showed higher brightness (20%), contrast (14%) and SNR (26%) than FDP-VNN. The measurement performed by trainee rater exhibited significant improvement on measurement reliability and accuracy using FDP-MPI4 in comparison with FDP-VNN (p less then 0.01), and the ICC of inter-rater measurement increased from 0.88 to 0.96. The FDP-PNN method could acquire and reconstruct spine images simultaneously and present the results in 1-2 minutes, which showed the potential to provide the approximate real-time visualization for the fast screening.Virtual clinical trials (VCTs) of medical imaging require realistic models of human anatomy. For VCTs in breast imaging, a multi-scale Perlin noise method is proposed to simulate anatomical structures of breast tissue in the context of an ongoing breast phantom development effort. Four Perlin noise distributions were used to replace voxels representing the tissue compartments and Cooper's ligaments in the breast phantoms. Digital mammography and tomosynthesis projections were simulated using a clinical DBT system configuration. Power-spectrum analyses and higher-order statistics properties using Laplacian fractional entropy (LFE) of the parenchymal texture are presented. These objective measures were calculated in phantom and patient images using a sample of 140 clinical mammograms and 500 phantom images. Power-law exponents were calculated using the slope of the curve fitted in the low frequency [0.1, 1.0] mm-1 region of the power spectrum. The results show that the images simulated with our prior and proposed Perlin method have similar power-law spectra when compared with clinical mammograms. The power-law exponents calculated are -3.10, -3.55, and -3.46, for the log-power spectra of patient, prior phantom and proposed phantom images, respectively. The results also indicate an improved agreement between the mean LFE estimates of Perlin-noise based phantoms and patients than our prior phantoms and patients. Thus, the proposed method improved the simulation of anatomic noise substantially compared to our prior method, showing close agreement with breast parenchyma measures.Ultrasound is a widely used technology for diagnosing developmental dysplasia of the hip (DDH) because it does not use radiation. Due to its low cost and convenience, 2-D ultrasound is still the most common examination in DDH diagnosis. In clinical usage, the complexity of both ultrasound image standardization and measurement leads to a high error rate for sonographers. The automatic segmentation results of key structures in the hip joint can be used to develop a standard plane detection method that helps sonographers decrease the error rate. However, current automatic segmentation methods still face challenges in robustness and accuracy. Thus, we propose a neonatal hip bone segmentation network (NHBS-Net) for the first time for the segmentation of seven key structures. We design three improvements, an enhanced dual attention module, a two-class feature fusion module, and a coordinate convolution output head, to help segment different structures. Compared with current state-of-the-art networks, NHBS-Net gains outstanding performance accuracy and generalizability, as shown in the experiments. Additionally, image standardization is a common need in ultrasonography. The ability of segmentation-based standard plane detection is tested on a 50-image standard dataset. The experiments show that our method can help healthcare workers decrease their error rate from 6%-10% to 2%. In addition, the segmentation performance in another ultrasound dataset (fetal heart) demonstrates the ability of our network.Off-policy Reinforcement Learning (RL) holds the promise of better data efficiency as it allows sample reuse and potentially enables safe interaction with the environment. Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates. The price of inefficiency becomes evident in real-world scenarios such as interaction-driven robot learning, where the success of RL has been rather limited, and a very high sample cost hinders straightforward application. In this paper, we propose a nonparametric Bellman equation, which can be solved in closed form. The solution is differentiable w.r.t the policy parameters and gives access to an estimation of the policy gradient. In this way, we avoid the high variance of importance sampling approaches, and the high bias of semi-gradient methods. We empirically analyze the quality of our gradient estimate against state-of-the-art methods, and we show that it outperforms the baselines in terms of sample efficiency on classical control tasks.Current multi-object tracking and segmentation (MOTS) methods follow the tracking-by-detection paradigm and adopt 2D or 3D convolutions to extract instance embeddings for tracking. However, due to the large receptive field of deep convolutional neural networks, the foreground areas of the current instance and the surrounding areas containing nearby instances or environments are usually mixed up in the learned instance embeddings, resulting in ambiguities in tracking. In this paper, we propose a highly effective method for learning instance embeddings based on segments by converting the compact image representation to un-ordered 2D point cloud representation and learning instance embedding in a point cloud processing manner. Moreover, multiple informative data modalities are formulated as point-wise representations to enrich point-wise features. In addition, to enable the practical utility of MOTS, we modify the one-stage method SpatialEmbedding for instance segmentation. The resulting efficient and effective framework, named PointTrackV2, outperforms all the state-of-the-art methods including 3D tracking methods by large margins with the near real-time speed. Extensive evaluations on three datasets demonstrate both the effectiveness and efficiency of our method. Furthermore, as crowded scenes for cars are insufficient in current MOTS datasets, we provide a more challenging dataset named APOLLO MOTS with much higher instance density.Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution diverges from the target one. Mainstream UDA methods strive to learn domain-aligned features. Although impressive results have been achieved, these methods have a potential risk of damaging the intrinsic data structures of target discrimination, raising an issue of generalization particularly for UDA tasks in an inductive setting. To address this issue, we are motivated by a UDA assumption of structural similarity across domains, and propose to directly uncover the intrinsic target discrimination via constrained clustering, where we constrain the clustering solutions using structural source regularization that hinges on the very same assumption. Technically, we propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one, and we thus term our method as H-SRDC. By enriching the structural similarity assumption, we extend H-SRDC for a pixel-level UDA task of semantic segmentation. We conduct extensive experiments on image classification and semantic segmentation. With no explicit feature alignment, our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. selleck products Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation from a monocular RGB image. Our model takes estimated 2D pose as the input and learns a generalized 2D-3D mapping function to leverage into 3D pose. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNNs) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a data augmentation algorithm to further improve model robustness against appearance variations and cross-view generalization ability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods. We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges.This article provides an overview of knowledge gaps that need to be addressed in cardiac anesthesia, including mitigating the inflammatory effects of cardiopulmonary bypass, defining myocardial infarction after cardiac surgery, improving perioperative neurologic outcomes, and the optimal management of patients undergoing valve replacement. In addition, emerging approaches to research conduct are discussed, including the use of new analytical techniques like machine learning, pragmatic trials, and adaptive designs.

Autoři článku: Driscollhogan0887 (McCracken Holm)