Dreyerferrell9971
Motivated by the size and availability of cell line drug sensitivity data, researchers have been developing machine learning (ML) models for predicting drug response to advance cancer treatment. As drug sensitivity studies continue generating drug response data, a common question is whether the generalization performance of existing prediction models can be further improved with more training data.
We utilize empirical learning curves for evaluating and comparing the data scaling properties of two neural networks (NNs) and two gradient boosting decision tree (GBDT) models trained on four cell line drug screening datasets. The learning curves are accurately fitted to a power law model, providing a framework for assessing the data scaling behavior of these models.
The curves demonstrate that no single model dominates in terms of prediction performance across all datasets and training sizes, thus suggesting that the actual shape of these curves depends on the unique pair of an ML model and a dataset. The mhe design of future experiments in prospective research studies.
A fitted power law learning curve provides a forward-looking metric for analyzing prediction performance and can serve as a co-design tool to guide experimental biologists and computational scientists in the design of future experiments in prospective research studies.
Rose is an important economic crop in horticulture. However, its field growth and postharvest quality are negatively affected by grey mould disease caused by Botrytis c. However, it is unclear how rose plants defend themselves against this fungal pathogen. Here, we used transcriptomic, metabolomic and VIGS analyses to explore the mechanism of resistance to Botrytis c.
In this study, a protein activity analysis revealed a significant increase in defence enzyme activities in infected plants. RNA-Seq of plants infected for 0 h, 36 h, 60 h and 72 h produced a total of 54 GB of clean reads. Among these reads, 3990, 5995 and 8683 differentially expressed genes (DEGs) were found in CK vs. T36, CK vs. T60 and CK vs. T72, respectively. Gene annotation and cluster analysis of the DEGs revealed a variety of defence responses to Botrytis c. infection, including resistance (R) proteins, MAPK cascade reactions, plant hormone signal transduction pathways, plant-pathogen interaction pathways, Ca
and disease resistance-ling, Ca
signalling, MAPK signalling, and SA signalling were activated in the Old Blush response to Botrytis c. RcTGA1 positively regulates rose resistance to Botrytis c. A total of 635 metabolites were detected in all samples. DEMs were enriched in phenylpropanoid biosynthesis, glucosinolates and other disease resistance pathways.
Fifty-four GB of clean reads were generated through RNA-Seq. R proteins, ROS signalling, Ca2+ signalling, MAPK signalling, and SA signalling were activated in the Old Blush response to Botrytis c. RcTGA1 positively regulates rose resistance to Botrytis c. A total of 635 metabolites were detected in all samples. DEMs were enriched in phenylpropanoid biosynthesis, glucosinolates and other disease resistance pathways.
Non-alcohol fatty liver disease (NAFLD) is the most common liver disease and an unhealthy lifestyle can lead to an increased risk of NAFLD. The present study aims to evaluate the association of meat consumption with NAFLD risk and liver-related biochemical indexes in middle-aged and elderly Chinese.
A cross-sectional study was conducted in individuals who were 45years or older and underwent a physical examination from April 2015 to August 2017 in Southeast China. To evaluate associations between meat intake and NAFLD risk, inverse probability of treatment weighting and subgroup analyses were performed with logistic regressions. Spearman's rank correlation was carried out to examine the relationship between meat consumptions and liver-related biochemical indexes.
High consumptions of red meat (28.44-49.74 and > 71.00g/day) (OR
= 1.948; P < 0.001; OR
= 1.714; P = 0.002) was positively associated with NAFLD risk on inverse probability of treatment weighting analysis, adjusting for smoking, tea intake, weekly hours of physical activity and presence of hypertension, dyslipidemia and diabetes. Exposure-response relationship analysis presented that red meat intake was positively associated with NAFLD risk. Significant associations of red meat intakes with serum levels of γ-glutamyl transferase, alanine transaminase, aspartate aminotransferase, total triglyceride and high-density lipoprotein cholesterol were found (r
= 0.176; P < 0.001; r
= 0.128; P < 0.001; r
= 0.060; P = 0.016; r
= 0.085; P = 0.001; r
= - 0.074; P = 0.003).
These findings suggest that the reduction of meat consumption may decrease NAFLD risk and should warrant further investigations.
These findings suggest that the reduction of meat consumption may decrease NAFLD risk and should warrant further investigations.
Copy number variations (CNVs) are a major type of structural genomic variants that underlie genetic architecture and phenotypic variation of complex traits, not only in humans, but also in livestock animals. We identified CNVs along the chicken genome and analyzed their association with performance traits. Genome-wide CNVs were inferred from Affymetrix® high density SNP-chip data for a broiler population. CNVs were concatenated into segments and association analyses were performed with linear mixed models considering a genomic relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35 to 41 days, feed conversion ratio from 35 to 41 days and, body weight gain from 35 to 41 days of age.
We identified 23,214 autosomal CNVs, merged into 5042 distinct CNV regions (CNVRs), covering 12.84% of the chicken autosomal genome. One significant CNV segment was associated with BWG on GGA3 (q-value = 0.00443); one significant CNV segment was associated with BW35 (q-value = 0.00571), BW41 (q-value = 0.00180) and BW42 (q-value = 0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (q-value = 0.00432). All significant CNV segments were verified by qPCR, and a validation rate of 92.59% was observed. These CNV segments are located nearby genes, such as KCNJ11, MyoD1 and SOX6, known to underlie growth and development. Moreover, gene-set analyses revealed terms linked with muscle physiology, cellular processes regulation and potassium channels.
Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate performance traits in chickens. Staurosporine Our findings provide a foundation for future functional studies on the role of specific genes in regulating performance in chickens.
Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate performance traits in chickens. Our findings provide a foundation for future functional studies on the role of specific genes in regulating performance in chickens.