Downscrouch0027
Using NPs of other average sizes (3 and 8 nm), we demonstrated that size plays an important role in the reactivity as observed in ESI MS and HRTEM.A visible light promoted deaminative strategy for the difluoroalkylation reaction utilizing pyridinium-activated aliphatic primary amines and difluoroenoxysilane as substrates has been developed. This protocol is characteriazed by its mild reaction conditions and broad substrate scope, which converted a diverse array of amine-containing molecules to the alkyl-CF2COPh products. Moreover, the resulting products can be easily transformed into a vast array of structurally novel and interesting difluoro-containing moieties, therefore providing a facile route for applications in medicinal chemistry and the life sciences.Alkaline earth metal ion organic frameworks (AEMOFs) represent a relatively underexplored subcategory of metal-organic frameworks (MOFs). In this contribution, we present the synthesis and structural study of the new MOFs 1-8 based on the alkaline earth ions Mg2+, Ca2+, Sr2+ and Ba2+ and the amino substituted bridging ligands 4-aminonaphthalene-2,6-dicarboxylate (ANDC2-) and 4,8-diaminonaphthalene-2,6-dicarboxylate (DANDC2-). Compounds 1, 5, 6, 7 and 8 constitute rare examples of three-dimensional MOFs which feature square planar M4 secondary building units (SBUs) surrounded by eight bridging ditopic ligands. The underlying topology of MOFs 1, 5, 7 and 8 conforms to the 4-c pcb net which can be simplified to the 8-c bcu net, while 6 adopts the 4-c lta net which simplifies to the 8-c reo net. find more To the best of our knowledge these are the first examples of MOFs of their structural types formed by linear dicarboxylates instead of trigonal tricarboxylates or tetrahedral tetracarboxylates. Compounds 2, 3 and 4 also feature three dimensional networks with linear rod-shaped SBUs with the Ba2+ MOF 3 displaying an sra rod-net and MOFs 2 and 4 showing very complex rod-nets with so far unique topologies. Fluorescence studies revealed that the free ligands exhibit strong blue-green emission displaying considerable positive solvatochromism thereby pointing towards charge transfer excited states involving the shift of electron density from the amino groups to the aromatic core. Correspondingly, the MOFs display ligand based fluorescence with small differences in emission maxima possibly attributable to the difference in the charge density of the metal ions combined with the different environments around ligands in the crystal structures.Perivascular adipose tissue (PVAT) regulates vascular function and represents a novel therapeutic target in vascular diseases. In this work, a new approach based on fiber-optic Raman spectroscopy and spectral modelling was used to characterize the chemical content of the PVAT of the internal mammary artery (IMA) of patients with advanced coronary atherosclerosis (n = 10) undergoing coronary bypass surgery. Our results showed a high degree of lipid unsaturation and low carotenoid content in the PVAT of the IMA of patients with more advanced coronary artery disease. Moreover, the spectral modelling of the IMA's PVAT composition indicated that glyceryl trioleate was a major PVAT lipid and for patients with relatively low levels of β-carotene, it was accompanied by arachidonic acid and glyceryl trilinolenate. In summary, our proof-of-concept study suggests that carotenoid content and lipid unsaturation degree may reflect the PVAT functional status and a Raman-based assessment of the PVAT of the IMA could prove useful as a novel diagnostic tool to rapidly define the PVAT phenotype in a grafted artery in patients undergoing coronary bypass.The multicenter (pancake) bonding between cation-radicals of tetramethyltetraselenafulvalene, TMTSF+˙, tetramethyltetrathiafulvalene, TMTTF+˙, and bis(ethylenedithio)-tetrathiafulvalene, ET+,˙ was compared to that of tetrathiafulvalene, TTF+˙. To minimize counter-ion effects, the cation-radical salts with weakly coordinating anions (WCA), tetrakis(3,5-trifluoromethylphenyl)borate, dodecamethylcarborane and hexabromocarborane were prepared. Solid-state (X-ray and EPR) measurements revealed diamagnetic π-dimers in the TMTSF and ET salts and the separate monomers in the TTF salts with all WCAs, while TMTTF existed as a dimer in one and a monomer in two salts. The variable-temperature UV-Vis studies of these salts in solution showed that the thermodynamics of formation of the π-bonded dimers of TMTTF+˙ was close to that of TTF+˙, while TMTSF+˙ and ET+˙ showed a higher propensity for π-dimerization. These data indicated that the replacement of sulfur with heavier selenium or insertion of ethylenedithia-substituents into the TTF core increases the π-dimers' stability. Yet, computational analysis indicated that the weakly covalent component of π-bonding decreases in the order TTF > TMTTF > TMTSF > ET. The higher stability of the π-dimers of TMTSF+˙ and ET+˙ cation-radicals was related to a decrease of the electrostatic repulsion between cationic counter-parts and an increase of dispersion components in these associations.Reaction of Co(NCS)2 with 4-bromopyridine leads to the formation of discrete complexes with the composition Co(NCS)2(4-bromopyridine)4·(CH3CN)0.67 (1), Co(NCS)2(4-bromopyridine)2(H2O)2 (2), Co(NCS)2(4-bromopyridine)2(CH3OH)2 (3) and Co(NCS)2(4-bromopyridine)2(CH3CN)2 (4). Upon heating compounds 2 and 4 transform into a crystalline product with the composition Co(NCS)2(4-bromopyridine)2 (5-I) that also can easily be obtained from solution. In this compound, the Co cations are linked by single μ-1,3-bridging thiocyanate anions into layers. Thermal decomposition of 3 leads to a second isomer (5-II), which is thermodynamically metastable and can also be synthesized from solution under kinetic control. In contrast to 5-I, the Co cations are linked by pairs of anionic ligands into linear chains. The magnetic exchange is very weak in 5-I, but much stronger and ferromagnetic along the linear chains in 5-II. AF ordering in 5-II is reached at 3.05 K, and magnetic relaxation is observed at the metamagnetic transition with an Arrhenius barrier of 17.