Downeygeertsen1675
1%, 40/54). The upstaging rate of symptomatic DCIS to invasive disease was 34.9% (22/63). Imaging modality used for biopsy was associated with higher upstaging risk, with cases that were biopsied under MRI guidance accounting for 22.7% of upstaged cases versus 4.9% of non-upstaged cases (p=0.03).
Women with DCIS uncommonly present with symptoms, and the upstaging rate of symptomatic DCIS is high at nearly 35%. Biopsy modality type of MRI is associated with higher upstaging risk.
Women with DCIS uncommonly present with symptoms, and the upstaging rate of symptomatic DCIS is high at nearly 35%. Biopsy modality type of MRI is associated with higher upstaging risk.Lignin is produced as a byproduct in cellulosic biorefinery as well in pulp and paper industries and has the potential for the synthesis of a variety of phenolics chemicals, biodegradable polymers, and high value-added chemicals surrogate to conventional petro-based fuels. Therefore, in this critical review, we emphasize the possible scenario for lignin isolation, transformation into value addition chemicals/materials for the economic viability of current biorefineries. Additionally, this review covers the chemical structure of lignocellulosic biomass/lignin, worldwide availability of lignin and describe various thermochemical (homogeneous/heterogeneous base/acid-catalyzed depolymerization, oxidative, hydrogenolysis etc.) and biotechnological developments for the production of bio-based low molecular weight phenolics, i.e. polyhydroxyalkanoates, vanillin, adipic acid, lipids etc. Besides, some functional chemicals applications, lignin-formaldehyde ion exchange resin, electrochemical and production of few targeted chemicals are also elaborated. Finally, we examine the challenges, opportunities and prospects way forward related to lignin valorization.To extend the use of polyethersulfone (PES) ultrafiltration membranes in water process engineering, the membrane's wettability and anti-fouling properties should be further improved. In this context, hydroxyapatite/boron nitride (HAp/BN) nanocomposites have been prepared and intercalated into PES membranes using a non-solvent-induced phase separation process. High-quality 2D transparent boron nitride nanosheets (BN NSs) were prepared using an environmentally friendly and green-template assisted synthesis method in which 1D hexagonal hydroxyapatite nanosheets (HAp NRs) were uniformly distributed and hydrothermally immobilized at 180 °C. SEM, XRD, and Raman spectroscopy techniques were used to characterize the HAp/BN nanocomposites. PES membranes intercalated with various nanocomposite amounts (0-4 wt %) were also characterized by permeability, porosity, and contact angle measurements. Additional pathways for water molecule transport were promoted by the high surface area of the BN NSs, resulting in high permeability. Membrane wettability and antifouling properties were also improved by the inclusion of negative charge groups (OH- and PO43-) on HAp. Hybrid membranes containing 4 wt% HAp/BN showed the best overall performance with ∼97% increase in water flux, 90% rejection of bovine serum albumin (BSA), high water flux recovery ratio, low irreversible fouling, and high reversible fouling pattern. The intercalation of HAp/BN with the PES matrix therefore opens up a new direction to enhance the PES UF membranes' hydrophilicity, water flux, and antifouling capacity.A novel adsorbent was developed based on nitrile functionalized calix [4]arene grafted onto magnetic graphene oxide (N-Calix-MGO) for remediation of arsenic (III) ions from aqueous media. Mizagliflozin SGLT inhibitor The nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The effective parameters on adsorption efficiency such as pH, adsorbent dosage, contact time, initial concentration, and temperature were studied. The adsorption process was provided with a high removal efficiency up to (90%) at pH 6 which followed by IUPAC Type II pattern. The mathematical models of kinetics and isotherm validated the experimental process. The adsorption kinetic is followed pseudo-first-order model with R2 > 0.9. The adsorption equilibrium was well fitted on the Freundlich model (R2 ∼ 0.96) as compared Langmuir model (R2 ∼ 0.75). Hence, the Freundlich model suggested a multilayer sorption pattern with a physisorption mechanism for arsenic (III) uptake ono developed nanocomposite with a sorption capacity of 67 mg/g for arsenic. The Gibbs free energy (ΔG° less then -20 kJ/mol) showed As(III) uptake ono N-Calix-MGO nanocomposite was the physical adsorption mechanism.Using first-principles calculations, we investigated the changes in the lattice structure, electronic structures and catalytic performance for CO2 reduction reaction (CO2RR) of stanene under applied strain. Our calculations showed that the initial buckled honeycomb structure of free-standing stanene becomes increasingly flat upon the increase of tensile strain. Stanene remains its gapless semiconductor characteristic within the strain range of -2% and 2%, beyond which a semiconductor-to-metal transition occurs. Under strain, the adsorption of CO is weakened, which can facilitate the desorption of product CO, enabling a strained stanene to be a better catalyst for CO2RR to CO than strain-free stanene. In particular, the stanene with 4% strain may give rise to the best performance because of the weakest CO adsorption (Eadsorp= -0.15 eV). The adsorption of intermediate product COOH on stanene is tunable with strain. We also evaluated the overall catalytic performance of the strained stanene based on the adsorption of CO and COOH and the selectivity against HER. If the reduction of COOH is governed by adsorption of the intermediate, a 10% strain may give a stronger COOH adsorption, weaker CO adsorption and better selectivity against HER, leading to an enhanced catalytic performance for CO2RR to CO. On the other hand, if the reduction of COOH is governed by desorption, a tensile strain higher than 4% may result in an enhanced catalytic performance. Our study here suggests that strain-tuned stanene might serve as an optimal electrocatalyst for CO2RR to CO with a high activity and selectivity.