Doughertykure9517

Z Iurium Wiki

Muskox (Ovibos moschatus), as the biggest herbivore in the High Arctic, has been enduring the austere arctic nutritional conditions and has evolved to ingest and digest scarce and high lignified forages to support the growth and reproduce, implying probably harbor a distinct microbial reservoir for the deconstruction of plant biomass. Therefore, metagenomics approach was applied to characterize the rumen microbial community and understand the alteration in rumen microbiome of muskoxen fed either triticale straw or brome hay. The difference in the structure of microbial communities including bacteria, archaea, fungi, and protozoa between the two forages was observed at the taxonomic level of genus. Further, although the highly abundant phylotypes in muskoxen rumen fed either triticale straw or brome hay were almost the same, the selective enrichment different phylotypes for fiber degrading, soluble substrates fermenting, electron and hydrogen scavenging through methanogenesis, acetogenesis, propionogenesis, anrevotella and Piromyces. Our results strengthen metatranscriptomic evidence in support of the understanding of the microbial community and plant polysaccharide response to changes in the feed type and host animal. The study also establishes these specific microbial consortia procured from triticale straw group can be used further for efficient plant biomass hydrolysis.Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.Bacteria and fungi emit a huge variety of volatile organic compounds (VOCs) that can provide a valuable arsenal for practical use. However, the biological activities and functions of the VOCs are poorly understood. This work aimed to study the action of individual VOCs on the bacteria Agrobacterium tumefaciens, Arabidopsis thaliana plants, and fruit flies Drosophila melanogaster. VOCs used in the work included ketones, alcohols, and terpenes. The potent inhibitory effect on the growth of A. tumefaciens was shown for 2-octanone and isoamyl alcohol. Terpenes (-)-limonene and (+)-α-pinene practically did not act on bacteria, even at high doses (up to 400 µmol). 2-Butanone and 2-pentanone increased the biomass of A. thaliana at doses of 200-400 μmol by 1.5-2 times; 2-octanone had the same effect at 10 μmol and decreased plant biomass at higher doses. Isoamyl alcohol and 2-phenylethanol suppressed plant biomass several times at doses of 50-100 μmol. Plant seed germination was most strongly suppressed by isoamyl alcohol and 2-phenylethanol. The substantial killing effect (at low doses) on D. click here melanogaster was exerted by the terpenes and the ketones 2-octanone and 2-pentanone. The obtained data showed new information about the biological activities of VOCs in relation to organisms belonging to different kingdoms.Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.Komagataella phaffii yeast is one of the most important biocompounds producing microorganisms in modern biotechnology. Optimization of media recipes and cultivation strategies is key to successful synthesis of recombinant proteins. The complex effects of proline on gene expression in the yeast K. phaffii was analyzed on the transcriptome level in this work. Our analysis revealed drastic changes in gene expression when K. phaffii was grown in proline-containing media in comparison to ammonium sulphate-containing media. Around 18.9% of all protein-encoding genes were differentially expressed in the experimental conditions. Proline is catabolized by K. phaffii even in the presence of other nitrogen, carbon and energy sources. This results in the repression of genes involved in the utilization of other element sources, namely methanol. We also found that the repression of AOX1 gene promoter with proline can be partially reversed by the deletion of the KpPUT4.2 gene.The genome of Exiguobacterium aurantiacum SW-20 (E. aurantiacum SW-20), a salt-tolerant microorganism with petroleum hydrocarbon-degrading ability isolated from the Changqing Oilfield, was sequenced and analyzed. Genomic data mining even comparative transcriptomics revealed that some genes existed in SW-20 might be related to the salt tolerance. Besides, genes related to petroleum hydrocarbon degradation discovered in genomic clusters were also found in the genome, indicating that these genes have a certain potential in the bioremediation of petroleum pollutants. Multiple natural product biosynthesis gene clusters were detected, which was critical for survival in the extreme conditions. Transcriptomic studies revealed that some genes were significantly up-regulated as salinity increased, implying that these genes might be related to the salt tolerance of SW-20 when living in a high salt environment. In our study, gene clusters including salt tolerance, heavy metal tolerance and alkane degradation were all compared. When the same functional gene clusters from different strains, it was discovered that the gene composition differed. Comparative genomics and in-depth analysis provided insights into the physiological features and adaptation strategies of E. aurantiacum SW-20 in the oilfield environment. Our research increased the understanding of niches adaption of SW-20 at genomic level.Vermicomposting is the process of organic waste degradation through interactions between earthworms and microbes. A variety of organic wastes can be vermicomposted, producing a nutrient-rich final product that can be used as a soil biofertilizer. Giving the prolific invasive nature of the Australian silver wattle Acacia dealbata Link in Europe, it is important to find alternatives for its sustainable use. However, optimization of vermicomposting needs further comprehension of the fundamental microbial processes. Here, we characterized bacterial succession during the vermicomposting of silver wattle during 56 days using the earthworm species Eisenia andrei. We observed significant differences in α- and β-diversity between fresh silver wattle (day 0) and days 14 and 28, while the bacterial community seemed more stable between days 28 and 56. Accordingly, during the first 28 days, a higher number of taxa experienced significant changes in relative abundance. A microbiome core composed of 10 amplicon sequence variants was identified during the vermicomposting of silver wattle (days 14 to 56). Finally, predicted functional profiles of genes involved in cellulose metabolism, nitrification, and salicylic acid also changed significantly during vermicomposting. This study, hence, provides detailed insights of the bacterial succession occurring during vermicomposting of the silver wattle and the characteristics of its final product as a sustainable plant biofertilizer.Ginger rhizome rot disease, caused by the pathogen Bacilluspumilus GR8, could result in severe rot of ginger rhizomes and heavily threaten ginger production. In this study, we identified and characterized a new Bacillus velezensis strain, designated ATR2. Genome analysis revealed B. velezensis ATR2 harbored a series of genes closely related to promoting plant growth and triggering plant immunity. Meanwhile, ten gene clusters involved in the biosynthesis of various secondary metabolites (surfactin, bacillomycin, fengycin, bacillibactin, bacilysin, difficidin, macrolactin, bacillaene, plantazolicin, and amylocyclicin) and two clusters encoding a putative lipopeptide and a putative phosphonate which might be explored as novel bioactive compounds were also present in the ATR2 genome. Moreover, B. velezensis ATR2 showed excellent antagonistic activities against multiple plant pathogenic bacteria, plant pathogenic fungi, human pathogenic bacteria, and human pathogenic fungus. B. velezensis ATR2 was also efficacious in control of aphids. The antagonistic compound from B. velezensis ATR2 against B.pumilus GR8 was purified and identified as bacillomycin D. In addition, B. velezensis ATR2 exhibited excellent biocontrol efficacy against ginger rhizome rot disease on ginger slices. These findings showed the potential of further applications of B. velezensis ATR2 as a biocontrol agent in agricultural diseases and pests management.Asexual species of the genus Epichloë (Clavicipitaceae, Ascomycota) form endosymbiotic associations with Pooidae grasses. This association is important both ecologically and to the pasture and turf industries, as the endophytic fungi confer a multitude of benefits to their host plant that improve competitive ability and performance such as growth promotion, abiotic stress tolerance, pest deterrence and increased host disease resistance. Biotic stress tolerance conferred by the production of bioprotective metabolites has a critical role in an industry context. While the known antimammalian and insecticidal toxins are well characterized due to their impact on livestock welfare, antimicrobial metabolites are less studied. Both pasture and turf grasses are challenged by many phytopathogenic diseases that result in significant economic losses and impact livestock health. Further investigations of Epichloë endophytes as natural biocontrol agents can be conducted on strains that are safe for animals. With the additional benefits of possessing host disease resistance, these strains would increase their commercial importance.

Autoři článku: Doughertykure9517 (Bjerregaard Breen)