Dotsonringgaard6341
The structures of the sponge-derived dibrominated bis-indole alkaloids, namely, echinosulfone A (2) and the echinosulfonic acids A to D (9-12), have been revised based upon reanalysis of their NMR spectroscopic and MS spectrometric data, comparison of this data with those reported for structurally related compounds, and based on their common biogenesis. The reinterpreted spectroscopic evidence has been corroborated by the total synthesis of the revised structure of echinosulfone A (2). This was achieved by bis-carbonylation at C-3 of the magnesium salt of 6-bromoindole with triphosgene to afford the new dibrominated bis-indole ketone, bis(6-bromo-1H-indol-3-yl)methanone (3), followed by N-sulfonation of one indole moiety to furnish 6-bromo-3-(6-bromo-1H-indole-3-carbonyl)-1H-indole-1-sulfonate (2). The five marine alkaloids corrected herein each contain an indole sulfamate and are all carbon-bridged dibrominated bis-indoles echinosulfone A (2) is a di(1H-indol-3-yl)methanone, while the echinosulfonic acids A to D (9-12) are methyl 2,2-bis(1H-indol-3-yl) acetates.Polycyclic aromatic hydrocarbons (PAHs) present in crude oil are known to impair visual development in fish. However, the underlying mechanism of PAH-induced toxicity to the visual system of fish is not understood. Embryonic zebrafish (Danio rerio) at 4 h post fertilization were exposed to weathered crude oil and assessed for visual function using an optokinetic response, with subsequent samples taken for immunohistochemistry and gene expression analysis. Selleckchem B02 Cardiotoxicity was also assessed by measuring the heart rate, stroke volume, and cardiac output, as cardiac performance has been proposed to be a contributing factor to eye-associated malformations following oil exposure. Larvae exposed to the highest concentrations of crude oil (89.8 μg/L) exhibited an increased occurrence of bradycardia, though no changes in stroke volume or cardiac output were observed. However, genes important in eye development and phototransduction were downregulated in oil-exposed larvae, with an increased occurrence of cellular apoptosis, reduced neuronal connection, and reduced optokinetic behavioral response in zebrafish larvae.We report herein a sustainable method for the preparation of 2-arylpyridines through C-H arylation of pyridines using in situ formed diazonium salts (from commercially available aromatic amines) in the presence of a photoredox catalyst under blue light-emitting diode (LED) irradiation. The reaction is tolerant to a wide range of functional groups (e.g., halogen, nitrile, formyl, acetyl, ester). Applications to the C-H bond arylation of bipyridine ligands is also presented.An enantioselective total synthesis of (-)-batrachotoxinin A is accomplished based on a key photoredox coupling reaction and the subsequent local-desymmetrization operation. After the expedient assembly of the highly oxidized steroid skeleton, a delicate sequence of redox manipulations was carried out to deliver a late-stage intermediate on gram scale-and ultimately (-)-batrachotoxinin A in an efficient manner.The development of environmentally friendly and long-term marine antifouling coating remains a huge challenge in the maritime industry. For this purpose, we developed a novel and efficient antifouling coating based on a synergistic strategy, incorporating contact inhibition, fouling repelling, and antifouling properties. Results demonstrated that the coating could efficiently resist the adhesion of protein, bacteria, and Navicula diatoms. More importantly, marine field tests showed the coating could efficiently inhibit biofouling for at least 8 months. This approach paves a new way for the development of environmentally friendly and long-term antifouling coating.Conventionally, z-direction modulation of two-dimensional covalent organic frameworks (2D-COFs) is difficult to achieve because they rely on spontaneous π-π interactions to form 3D architectures. Herein, we report a facile construction of a novel intercalated covalent organic framework (Intercalated-COF) by synchronizing operations of supramolecular donor-acceptor (D-A) interactions (A unit 2,5,8,11-tetra(p-formylphenyl)-perylene diimide (PDI) 1; D unit perylene 3, as intercalator) in the vertical directions, with polymerizations (by only reacting 1 with p-phenylenediamine 2) in the lateral directions. In this Intercalated-COF, the PDI-based covalent 2D layers are uniformly separated by perylene guest layers. This supramolecular strategy opens the possibility for z-direction modulation of 2D-COFs through "intercalating" various guest molecules and thus may contribute to the exploration of advanced applications of these porous and crystalline frameworks.Very-short, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs, and LCCPs, respectively) were analyzed in different tissues of the terrestrial short-tailed mamushi (Gloydius brevicaudus) and the semi-aquatic red-backed rat snake (Elaphe rufodorsata) from the Yangtze River Delta, China. The total CP concentrations in liver, muscle, and adipose tissues in the two snake species were in the range of 2500-24 000, 4900-48 000, and 12-630 ng/g lw, respectively. Tissue burdens indicated that vSCCPs (C6-9) and SCCPs (C10-13) preferentially distributed to snake liver, while adipose was an important storage site and sink of MCCPs (C14-17) and LCCPs (C>18). On a lipid weight basis, vSCCPs and SCCPs were found in highest concentrations in red-backed rat snake liver and MCCPs and LCCPs in muscle, whereas for short-tailed mamushi, all CP groups were predominant in muscle, probably reflecting ecosystem/food web differences. Moreover, vSCCPs, SCCPs, MCCPs, and LCCPs were found to be biomagnified from black-spotted frogs to red-backed rat snakes with mean (maximum) biomagnification factors of 2.2 (3.4), 1.9 (3.7), 1.8 (2.8), and 1.7 (4.5), respectively. This is the first field study of biomagnification potential involving vSCCPs and LCCPs and highlights the need to include all CPs in studies.Adjusting the protecting group strategy, from an alkyl ether to a bidentate ketal at the carbohydrate backbone of uridine, facilitates a switchable diastereoselective α- or β-C4'/C5'-spirocyclopropanation. Using these spirocyclopropanated nucleosides as key intermediates, we synthesized a variety of C4'-methylated d-ribose and l-lyxose-configured uridine derivatives by a base-mediated ring-opening of the spirocyclopropanol moiety. Investigations of antiviral activity against the human respiratory syncytial virus were carried out for selected derivatives, showing moderate activity.