Dorseyprater3195
To build high-performance thermoelectric (TE) devices for power generation, a suitable diffusion-barrier layer between the electrodes and the TE materials in a TE device is generally required for achieving good interfacial connection with high reliability, high mechanical strength but low electrical and thermal contact resistivities. GeTe-based materials have attracted great attention recently due to their high TE performance in the mid-temperature range, but studies on their TE devices are still limited. Here, we selected the Al66Si34 alloy as a diffusion barrier for GeTe-based TE legs based on the matching test of the coefficient of thermal expansion. The good connection between Al66Si34 and Ge0.9Sb0.1TeB0.01 is realized by the interfacial reaction, where the randomly distributed Al2Te3 and Ge precipitates are formed at the interface of the joint. The as-prepared interfacial electrical contact resistivity can be as low as 20.7 μΩ·cm2 and only slightly increases to 26.1 μΩ·cm2 after 16 days of aging at 500 °C. Moreover, the shear strength of the joints can be as high as 26.6 MPa and unexpectedly increases to 41.7 MPa after 16 days of aging. The thickness of the reaction layer tends to be stabilized after 8 days of aging and nearly does not change after further aging to 16 days, which may be ascribed to the drag effect from Si and the secondary Ge phases. These results demonstrate the great potential of the Al-Si alloy as a diffusion barrier for GeTe-based TE devices with high performance.RNA plays a myriad of roles in the body including the coding, decoding, regulation, and expression of genes. RNA oligonucleotides have garnered significant interest as therapeutics via antisense oligonucleotides or small interfering RNA strategies for the treatment of diseases ranging from hyperlipidemia, HCV, and others. Additionally, the recently developed CRISPR-Cas9 mediated gene editing strategy also relies on Cas9-associated RNA strands. However, RNA presents numerous challenges as both a synthetic target and a potential therapeutic. 3-Amino-9-ethylcarbazole clinical trial RNA is inherently unstable, difficult to deliver into cells, and potentially immunogenic by itself or upon modification. Despite these challenges, with the help of chemically modified oligonucleotides, multiple RNA-based drugs have been approved by the FDA. The progress is made possible due to the nature of chemically modified oligonucleotides bearing advantages of nuclease stability, stronger binding affinity, and some other unique properties. This review will focus on the chemical synthesis of RNA and its modified versions. How chemical modifications of the ribose units and of the phosphatediester backbone address the inherent issues with using native RNA for biological applications will be discussed along the way.The acidity of atmospheric aerosols is a critical property that affects the chemistry and composition of the atmosphere. Many key multiphase chemical reactions are pH-dependent, impacting processes like secondary organic aerosol formation, and need to be understood at a single particle level due to differences in particle-to-particle composition that impact both climate and health. However, the analytical challenge of measuring aerosol acidity in individual particles has limited pH measurements for fine ( less then 2.5 μm) and coarse (2.5-10 μm) particles. This has led to a reliance on indirect methods or thermodynamic modeling, which focus on average, not individual, particle pH. Thus, new approaches are needed to probe single particle pH. In this study, a novel method for pH measurement was explored using degradation of a pH-sensitive polymer, poly(ε-caprolactone), to determine the acidity of individual submicron particles. Submicron particles of known pH (0 or 6) were deposited on a polymer film (21-25 nm thick) and allowed to react. Particles were then rinsed off, and the degradation of the polymer was characterized using atomic force microscopy and Raman microspectroscopy. After degradation, holes in the PCL films exposed to pH 0 were observed, and the loss of the carbonyl stretch was monitored at 1723 cm-1. As particle size decreased, polymer degradation increased, indicating an increase in aerosol acidity at smaller particle diameters. This study describes a new approach to determine individual particle acidity and is a step toward addressing a key measurement gap related to our understanding of atmospheric aerosol impacts on climate and health.Pure two-dimensional (2D) perovskite (n = 1)-based perovskite solar cells (PSCs) have been proven to have excellent stability against humidity, but the photovoltaic performance is very poor due to the parallel orientation to the substrate and mismatched energy alignment in the PSC device. We report herein a novel bulky organic cation of 3-aminopropionitrile (3-APN) for constructing a pure 2D hybrid lead-iodide perovskite. The crystal structure of (3-APN)2PbI4 features a stable layered and undistorted PbI6 octahedral geometry (∠Pb-I-Pb = 180°) with a small I···I distance (4.66 Å), and the crystals grow in a dominant out-of-plane direction to the substrate. In addition, the existence of an intramolecular H bond between cyano groups and ammonium heads result in an appropriate valence band level of (3-APN)2PbI4 for a well-matched energy level alignment in the device, benefitting the interfacial charge transfer and hence a better photovoltaic performance. As a result, the PSC with the pure 2D (3-APN)2PbI4 perovskite-based PSC achieves a power conversion efficiency of 3.39%, which is the highest value thus far for the pure 2D lead-iodide perovskite family, to the best of our knowledge. More importantly, this pure 2D (3-APN)2PbI4 perovskite-based PSC demonstrates excellent stability against humidity. This work demonstrates that there is great potential to realize efficient and stable pure 2D perovskite-based PSCs through the wise design of organic cations.MoS2 is a 2D semiconductor where exfoliation to a single layer results in improved catalytic properties. However, its high surface energy can lead to extensive aggregation, resulting in degraded catalytic performance and stability. Combined with a lack of dispersibility in water, this represents a pitfall for catalysis in the aqueous phase. Herein, we present the use of nanoscopic layered silicates pillared with a cationic surfactant to template the growth of MoS2 in the interlayer space. This provides heterostructured layered nanoparticles ∼25 nm wide by 3-8 nm thick containing isolated MoS2 layers. The resulting nanohybrids retain the disc-like morphology and surface chemistry of the clays, providing good aqueous stability, while also providing access to the catalytic edge-sites of the MoS2 layer. In addition to significant enhancement of catalytic dye degradation, molecular aggregation on the highly charged clay interface is comparable to unmodified clays. These particles are ideal for studies of charge-transport properties in confined semiconductor layers, as well as hierarchical self-assembly into functional materials.