Donahuepalm1818

Z Iurium Wiki

Diabetes is a group of metabolic conditions resulting in high blood sugar levels over prolonged periods that affects hundreds of millions of patients worldwide. Measuring glucose concentration enables patient-specific insulin therapy, and is essential to reduce the severity of the disease, potential complications, and related mortalities. Recent advances and developments in smartphone-based colorimetric glucose detection systems are discussed in this review. The importance of glucose monitoring, data collection, transfer, and analysis, via non-invasive/invasive methods is highlighted. The review also presents various approaches using 3D-printed materials, screen-printed electrodes, polymer templates, designs allowing multiple glucose analysis, bioanalytes and/or nanostructures for glucose detection. The positive effects of advances in improving the performance of smartphone-based platforms are introduced along with future directions and trends in the application of emerging technologies in smartphone-based diagnostics.The number of people living with HIV continues to increase with the current total near 38 million, of which about 26 million are receiving antiretroviral therapy (ART). These treatment regimens are highly effective when properly managed, requiring routine viral load monitoring to assess successful viral suppression. Efforts to expand access by decentralizing HIV nucleic acid testing in low- and middle-income countries (LMICs) has been hampered by the cost and complexity of current tests. Sample preparation of blood samples has traditionally relied on cumbersome RNA extraction methods, and it continues to be a key bottleneck for developing low-cost POC nucleic acid tests. We present a microfluidic paper-based analytical device (μPAD) for extracting RNA and detecting HIV in serum, leveraging low-cost materials, simple buffers, and an electric field. We detect HIV virions and MS2 bacteriophage internal control in human serum using a novel lysis and RNase inactivation method, paper-based isotachophoresis (ITP) for RNA extraction, and duplexed reverse transcription recombinase polymerase amplification (RT-RPA) for nucleic acid amplification. We design a specialized ITP system to extract and concentrate RNA, while excluding harsh reagents used for lysis and RNase inactivation. We found the ITP μPAD can extract and purify 5000 HIV RNA copies per mL of serum. We then demonstrate detection of HIV virions and MS2 bacteriophage in human serum within 45-minutes.Thrombosis and infection are the leading causes of blood-contacting device (BCD) failure, mainly due to the poor performance of existing biomaterials. Poly(2-hydroxyethyl methacrylate) (pHEMA) has excellent hemocompatibility but the weak mechanical properties impair its use as a bulk material for BCD. As such, pHEMA has been explored as a coating, despite the instability and difficulty of attachment to the underlying polymer compromise its success. This work describes the hydrogel composites made of pHEMA and graphene-based materials (GBM) that meet the biological and mechanical requirements for a stand-alone BCD. Selleckchem AZD5004 Five GBM differing in thickness, oxidation degree, and lateral size were incorporated in pHEMA, revealing that only oxidized-GBM can reinforce pHEMA. pHEMA/oxidized-GBM composites are cytocompatible and prevent the adhesion of endothelial cells, blood platelets, and bacteria (S. aureus), thus maintaining pHEMA's anti-adhesive properties. As a proof of concept, the thrombogenicity of the tubular prototypes of the best formulation (pHEMA/Graphene oxide (GO)) was evaluated in vivo, using a porcine arteriovenous-shunt model. pHEMA/GO conduits withstand the blood pressure and exhibit negligible adhesion of blood components, revealing better hemocompatibility than ePTFE, a commercial material for vascular access. Our findings reveal pHEMA/GO, a synthetic and off-the-shelf hydrogel, as a preeminent material for the design of blood-contacting devices that prevent thrombosis and bacterial adhesion.Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.Oxygen plays a key role in human physiology and is abnormally modulated in various disease pathologies making its in situ monitoring quite important. Most oxygen sensors are not able to measure oxygen levels deep inside the tissue or have mismatched electrode-tissue interfaces. In this study we developed a flexible thread-based oxygen sensor that combines the unique advantages of minimal invasiveness and superior flexibility offering the possibility for tissue integration. The sensor is featured by a simple and low-cost fabrication approach which allows for measuring the overall oxygen concentration either over a large surface area or locally at any spot in any three-dimensional environment with high spatial accuracy and high sensitivity. The sensor can sensitively detect dissolved oxygen levels within the physiological range of tissue oxygenation. The sensor's performance is insensitive to pH variation from 5.8 to 8.0. The sensor shows good repeatability and stability over a period of one week in phosphate buffered saline.

Autoři článku: Donahuepalm1818 (Hunt Riis)