Donahuegolden9705
mutans biofilms. Co-loaded NPC treatments effectively disrupted biofilm biomass (i.e., dry weight) and reduced biofilm viability by ~3 log CFU/mL versus single drug-only controls in developing biofilms, suggesting dual-drug delivery exhibits synergistic anti-biofilm effects. Mechanistic studies revealed that co-loaded NPCs synergistically inhibited planktonic bacterial growth compared to controls and reduced S. mutans acidogenicity due to decreased atpD expression, a gene associated with acid tolerance. Moreover, the myricetin-loaded NPC corona enhanced NPC binding to tooth-mimetic surfaces, which can increase drug efficacy through improved retention at the biofilm-apatite interface. Altogether, these findings suggest promise for co-delivery of myricetin and farnesol DDS as an alternative anti-biofilm treatment to prevent dental caries.Biodegradable zinc (Zn) and its alloys have great potential to be used for orthopedic applications due to their suitable degradation rate and good biocompatibility. However, pure Zn has insufficient mechanical properties, such as low strength and hardness, and poor plasticity, which limits its clinical applications. Here, we report on a new series of ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys aiming to achieve good corrosion resistance and biocompatibility, and enhanced mechanical properties via micro-alloying with copper (Cu), magnesium (Mg), and iron (Fe). Hot-rolling has also been applied to the new ternary alloys to further enhance their mechanical properties. Mechanical testing results indicate that both the strength and hardness of hot-rolled Zn-3Ge are significantly improved with micro-alloying of Cu, Mg, and Fe; of which the hot-rolled Zn-3Ge-0.5Mg exhibits the highest ultimate tensile strength of 253.4 MPa and yield strength of 208.5 MPa among all the alloys, 25.9% and 44.7% higher than those of the hot-rolled Zn-3Ge. The degradation rate of the as-cast alloys is lower than that of the hot-rolled alloys in Hanks' solution for 1 month and the hot-rolled Zn-3Ge-0.5Mg alloy exhibits the highest degradation rate of 0.075 mm/y. CCK-8 assay using MG-63 cells indicates that the diluted extracts of Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys with concentrations of 12.5% and 25% exhibit no or slight cytotoxicity, and the diluted extracts of Zn-3Ge-0.5Cu alloys show high cell viability of over 100%, showing the best cytocompatibility.Photocleavable biomaterials and bioconjugates are particularly interesting because light sources are easy to obtain and the responsiveness of materials is convenient to control. In recent years, various photocleavable biomaterials and bioconjugates have been synthesized for the control of payload release, regulation of biomolecule activity, 3D cell culture, and investigation of molecular mechanisms. Photocleavable linkers are crucial components of photocleavable biomaterials, which significantly influence the photoresponsive capabilities of materials. Photosensitive molecules, such as o-nitrobenzyls and coumarins, have been extensively developed as photocleavable linkers. In the present review, we provide comprehensive knowledge regarding the synthetic strategies of o-nitrobenzyl and coumarin derived linkers with various functional groups and their applications for the construction of photocleavable biomaterials and bioconjugates. Finally, the biomedical applications of o-nitrobenzyl and coumarin-based photocleavable biomaterials and bioconjugates will be summarized and discussed.Ectopic vascular calcification associated with aging, diabetes mellitus, atherosclerosis, and chronic kidney disease is a considerable risk factor for cardiovascular events and death. Although vascular smooth muscle cells are primarily implicated in calcification, the role of progenitor cells is less known. In this study, we engineered tubular vascular tissues from embryonic multipotent mesenchymal progenitor cells either without differentiating or after differentiating them into smooth muscle cells and studied ectopic calcification through targeted gene analysis. Tissues derived from both differentiated and undifferentiated cells calcified in response to hyperphosphatemic inorganic phosphate (Pi) treatment suggesting that a single cell-type (progenitor cells or differentiated cells) may not be the sole cause of the process. We also demonstrated that Vitamin K, which is the matrix gla protein activator, had a protective role against calcification in engineered vascular tissues. Addition of partially-soluble elastin upregulated osteogenic marker genes suggesting a calcification process. Furthermore, partially-soluble elastin downregulated smooth muscle myosin heavy chain (Myh11) gene which is a late-stage differentiation marker. This latter point, in turn, suggests that SMC may be switching into a synthetic phenotype which is one feature of vascular calcification. Taken together, our approach presents a valuable tool to study ectopic calcification and associated gene expressions relevant to clinical therapeutic targets.As an inflammatory skin disease of pilosebaceous follicles, Propionibacterium acnes (P. acnes) can aggravate local inflammatory responses and forms acne lesions. However, due to the skin barrier, various transdermal measures other than antibiotic creams are necessary. Microneedle (MN) patches are emerging platforms for the transdermal delivery of various therapeutics since it can effectively create transport pathways in the epidermis. Herein, we develop an active pharmaceutical ingredient poly(ionic liquid) (API PIL)-based MN patches containing salicylic acid (SA). The PIL-based MNs are simply prepared through photo-crosslinking of an imidazolium-type ionic liquid (IL) monomer in MN micro-molds, and following by anion exchange with salicylic acid anions (SA-). The fabricated SA-loaded PIL-MNs exhibited therapeutic efficiency in the topical treatment of P. acnes infection in vitro and in vivo. These active pharmaceutical ingredient PIL-based MNs can improve acne treatment, demonstrating potential applications for skin diseases. STATEMENT OF SIGNIFICANCE Microneedle (MN) patches can be used as platforms for transdermal delivery of various therapeutics to treat bacterial infection. Here, a facile strategy was developed to synthesize active pharmaceutical ingredient poly(ionic liquid)-based microneedle patches by anion-exchange with salicylic acid anion (SA-). The fabricated SA-loaded PIL-MNs are active on not only anti-bacteria but also anti-inflammation in P. AICAR in vitro acnes treated mice, and may have potential applications for skin acne infection.