Dominguezhahn6751
Conclusions Although MTP value decreased with age, the difference in occlusal status did not have an impact on MTP value. The correlation between BMI and MTP value was not shown in the youngest group or a group with sufficient occlusal units. The results presented in the present study may imply that, even if MTP is low, younger age and/or better occlusal status compensate for the inferior MTP value in the cohort studied.Whether the risk of multidrug-resistant bacteria (MDRB) acquisition in the intensive care unit (ICU) is modified by the COVID-19 crisis is unknown. In this single center case control study, we measured the rate of MDRB acquisition in patients admitted in COVID-19 ICU and compared it with patients admitted in the same ICU for subarachnoid hemorrhage (controls) matched 11 on length of ICU stay and mechanical ventilation. All patients were systematically and repeatedly screened for MDRB carriage. We compared the rate of MDRB acquisition in COVID-19 patients and in control using a competing risk analysis. Of note, although we tried to match COVID-19 patients with septic shock patients, we were unable due to the longer stay of COVID-19 patients. Among 72 patients admitted to the COVID-19 ICUs, 33% acquired 31 MDRB during ICU stay. The incidence density of MDRB acquisition was 30/1000 patient days. Antimicrobial therapy and exposure time were associated with higher rate of MDRB acquisition. Among the 72 SAH patients, 21% acquired MDRB, with an incidence density was 18/1000 patient days. The septic patients had more comorbidities and a greater number of previous hospitalizations than the COVID-19 patients. The incidence density of MDRB acquisition was 30/1000 patient days. The association between COVID-19 and MDRB acquisition (compared to control) risk did not reach statistical significance in the multivariable competing risk analysis (sHR 1.71 (CI 95% 0.93-3.21)). Thus, we conclude that, despite strong physical isolation, acquisition rate of MDRB in ICU patients was at least similar during the COVID-19 first wave compared to previous period.Many thanks to Dr. Mordaunt for his thoughtful Comment, which we were delighted to read with great interest[...].Improving the bioproduction ability of efficient host microorganisms is a central aim in bioengineering. To control biosynthesis in living cells, the regulatory system of the whole biosynthetic pathway should be clearly understood. In this study, we applied our network modeling method to infer the regulatory system for triacylglyceride (TAG) biosynthesis in Lipomyces starkeyi, using factor analyses and structural equation modeling to construct a regulatory network model. By factor analysis, we classified 89 TAG biosynthesis-related genes into nine groups, which were considered different regulatory sub-systems. We constructed two different types of regulatory models. One is the regulatory model for oil productivity, and the other is the whole regulatory model for TAG biosynthesis. From the inferred oil productivity regulatory model, the well characterized genes DGA1 and ACL1 were detected as regulatory factors. Furthermore, we also found unknown feedback controls in oil productivity regulation. These regulation models suggest that the regulatory factor induction targets should be selected carefully. Within the whole regulatory model of TAG biosynthesis, some genes were detected as not related to TAG biosynthesis regulation. Using network modeling, we reveal that the regulatory system is helpful for the new era of bioengineering.Human rhinoviruses have been linked both to the susceptibility of asthma development and to the triggering of acute exacerbations. Given that the human airway epithelial cell is the primary site of human rhinovirus (HRV) infection and replication, the current review focuses on how HRV-induced modulation of several aspects of epithelial cell phenotype could contribute to the development of asthma or to the induction of exacerbations. Modification of epithelial proinflammatory and antiviral responses are considered, as are alterations in an epithelial barrier function and cell phenotype. The contributions of the epithelium to airway remodeling and to the potential modulation of immune responses are also considered. The potential interactions of each type of HRV-induced epithelial phenotypic changes with allergic sensitization and allergic phenotype are also considered in the context of asthma development and of acute exacerbations.Plasticizers are added to diverse consumer products including children's products. Owing to their potential for endocrine disruption, the use of phthalate plasticizers is restricted in many children's products. In this study, exposure to five phthalate esters (dibutylphthalate, di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate, di-isobutyl phthalate, and diisononyl phthalate (DINP)) and an alternative (di-ethylhexyl adipate) was assessed by the use of children's products based on chemical analysis of 3345 products purchased during 2017 and 2019 in Korea. Plasticizers were found above the detection limits in 387 products, and DEHP and DINP were the two most predominantly detected plasticizers. Deterministic and probabilistic estimation of the margin of exposure at a screening level revealed that the use of children's products might be an important risk factor. However, it is also highly likely that the exposure could be overestimated, because the migration rate was estimated based solely on the content of plasticizers in children's products. Chemical migration is a key process determining the absorption of plasticizers from products; thus, further refinements in experimental determination or model estimation of the migration rate are required.Pleurotus geesteranus is a promising source of bioactive compounds. However, knowledge of the antioxidant behaviors of P. geesteranus protein hydrolysates (PGPHs) is limited. In this study, PGPHs were prepared with papain, alcalase, flavourzyme, pepsin, and pancreatin, respectively. The antioxidant properties and cytoprotective effects against oxidative stress of PGPHs were investigated using different chemical assays and H2O2 damaged PC12 cells, respectively. The results showed that PGPHs exhibited superior antioxidant activity. Especially, hydrolysate generated by alcalase displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (91.62%), 2,2-azino-bis (3-ethylbenzothia zoline-6-sulfonic acid) (ABTS) radical scavenging activity (90.53%), ferric reducing antioxidant power, and metal ion-chelating activity (82.16%). see more Analysis of amino acid composition revealed that this hydrolysate was rich in hydrophobic, negatively charged, and aromatic amino acids, contributing to its superior antioxidant properties.