Dohertysexton6968

Z Iurium Wiki

e., the "vulnerable host" hypothesis) from a field-based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus-infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.The epidermis plays an indispensable barrier function in animals. Some species have evolved unique epidermal structures to adapt to different environments. Aquatic and semi-aquatic mammals (cetaceans, manatees, and hippopotamus) are good models to study the evolution of epidermal structures because of their exceptionally thickened stratum spinosum, the lack of stratum granulosum, and the parakeratotic stratum corneum. PR-957 This study aimed to analyze an upstream regulatory gene transient receptor potential cation channel, subfamily V, member 3 (TRPV3) of epidermal differentiation so as to explore the association between TRPV3 evolution and epidermal changes in mammals. Inactivating mutations were detected in almost all the aquatic cetaceans and several terrestrial mammals. Relaxed selective pressure was examined in the cetacean lineages with inactivated TRPV3, which might contribute to its exceptionally thickened stratum spinosum as the significant thickening of stratum spinosum in TRPV3 knock-out mouse. However, functional TRPV3 may exist in several terrestrial mammals due to their strong purifying selection, although they have "inactivating mutations." Further, for intact sequences, relaxed selective constraints on the TRPV3 gene were also detected in aquatic cetaceans, manatees, and semi-aquatic hippopotamus. However, they had intact TRPV3, suggesting that the accumulation of inactivating mutations might have lagged behind the relaxed selective pressure. The results of this study revealed the decay of TRPV3 being the genomic trace of epidermal development in aquatic and semi-aquatic mammals. They provided insights into convergently evolutionary changes of epidermal structures during the transition from the terrestrial to the aquatic environment.Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α- and β-diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α-diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α-diversity was mainly influenced by dispersal limitation. Species and phylogenetic β-diversity were mainly consisted of turnover component. The functional β-diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β-diversity and their turnover component of species and phylogenetic β-diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α-diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α- and β-diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α- and β-diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.Coral reefs provide a range of important services to humanity, which are underpinned by community-level ecological processes such as coral calcification. Estimating these processes relies on our knowledge of individual physiological rates and species-specific abundances in the field. For colonial animals such as reef-building corals, abundance is frequently expressed as the relative surface cover of coral colonies, a metric that does not account for demographic parameters such as coral size. This may be problematic because many physiological rates are directly related to organism size, and failure to account for linear scaling patterns may skew estimates of ecosystem functioning. In the present study, we characterize the scaling of three physiological rates - calcification, respiration, and photosynthesis - considering the colony size for six prominent, reef-building coral taxa in Mo'orea, French Polynesia. After a seven-day acclimation period in the laboratory, we quantified coral physiological rates for three hours during daylight (i.e., calcification and gross photosynthesis) and one hour during night light conditions (i.e., dark respiration). Our results indicate that area-specific calcification rates are higher for smaller colonies across all taxa. However, photosynthesis and respiration rates remain constant over the colony-size gradient. Furthermore, we revealed a correlation between the demographic dynamics of coral genera and the ratio between net primary production and calcification rates. Therefore, intraspecific scaling of reef-building coral physiology not only improves our understanding of community-level coral reef functioning but it may also explain species-specific responses to disturbances.This study aimed at assessing haplotype diversity and population dynamics of three Congolese indigenous goat populations that included Kasai goat (KG), small goat (SG), and dwarf goat (DG) of the Democratic Republic of Congo (DRC). The 1169 bp d-loop region of mitochondrial DNA (mtDNA) was sequenced for 339 Congolese indigenous goats. The total length of sequences was used to generate the haplotypes and evaluate their diversities, whereas the hypervariable region (HVI, 453 bp) was analyzed to define the maternal variation and the demographic dynamic. A total of 568 segregating sites that generated 192 haplotypes were observed from the entire d-loop region (1169 bp d-loop). Phylogenetic analyses using reference haplotypes from the six globally defined goat mtDNA haplogroups showed that all the three Congolese indigenous goat populations studied clustered into the dominant haplogroup A, as revealed by the neighbor-joining (NJ) tree and median-joining (MJ) network. Nine haplotypes were shared between the studied goats and goat populations from Pakistan (1 haplotype), Kenya, Ethiopia and Algeria (1 haplotype), Zimbabwe (1 haplotype), Cameroon (3 haplotypes), and Mozambique (3 haplotypes). The population pairwise analysis (FST ) indicated a weak differentiation between the Congolese indigenous goat populations. Negative and significant (p-value less then .05) values for Fu's Fs (-20.418) and Tajima's (-2.189) tests showed the expansion in the history of the three Congolese indigenous goat populations. These results suggest a weak differentiation and a single maternal origin for the studied goats. This information will contribute to the improvement of the management strategies and long-term conservation of indigenous goats in DRC.Phenotypic plasticity is an important driver of species resilience. Often mediated by epigenetic changes, phenotypic plasticity enables individual genotypes to express variable phenotypes in response to environmental change. Barramundi (Lates calcarifer) are a protandrous (male-first) sequential hermaphrodite that exhibits plasticity in length-at-sex change between geographic regions. This plasticity is likely to be mediated by changes in DNA methylation (DNAm), a well-studied epigenetic modification. To investigate the relationships between length, sex, and DNAm in a sequential hermaphrodite, here, we compare DNAm in four conserved vertebrate sex-determining genes in male and female barramundi of differing lengths from three geographic regions of northern Australia. Barramundi first mature as male and later sex change to female upon the attainment of a larger body size; however, a general pattern of increasing female-specific DNAm markers with increasing length was not observed. Significant differences in DNAm between males and females of similar lengths suggest that female-specific DNAm arises rapidly during sex change, rather than gradually with fish growth. The findings also reveal that region-specific differences in length-at-sex change are accompanied by differences in DNAm and are consistent with variability in remotely sensed sea temperature and salinity. Together, these findings provide the first in situ evidence for epigenetically and environmentally mediated sex change in a protandrous hermaphrodite and offer significant insight into the molecular and ecological processes governing the marked and unique plasticity of sex in fish.Fungus-growing termites and their symbiotic Termitomyces fungi are critically important carbon and nutrient recyclers in arid and semiarid environments of sub-Saharan Africa. A major proportion of plant litter produced in these ecosystems is decomposed within nest chambers of termite mounds, where temperature and humidity are kept optimal for the fungal symbionts. While fungus-growing termites are generally believed to exploit a wide range of different plant substrates, the actual diets of most species remain elusive. We studied dietary niches of two Macrotermes species across the semiarid savanna landscape in the Tsavo Ecosystem, southern Kenya, based on carbon (C) and nitrogen (N) stable isotopes in Termitomyces fungus combs. We applied Bayesian mixing models to determine the proportion of grass and woody plant matter in the combs, these being the two major food sources available for Macrotermes species in the region. Our results showed that both termite species, and colonies cultivating different Termitomyces fungi, occupied broad and largely overlapping isotopic niches, indicating no dietary specialization. Including laser scanning derived vegetation cover estimates to the dietary mixing model revealed that the proportion of woody plant matter in fungus combs increased with increasing woody plant cover in the nest surroundings. Nitrogen content of fungus combs was positively correlated with woody plant cover around the mounds and negatively correlated with the proportion of grass matter in the comb. Considering the high N demand of large Macrotermes colonies, woody plant matter seems to thus represent a more profitable food source than grass. As grass is also utilized by grazing mammals, and the availability of grass matter typically fluctuates over the year, mixed woodland-grasslands and bushlands seem to represent more favorable habitats for large Macrotermes colonies than open grasslands.

Autoři článku: Dohertysexton6968 (Field Hurley)