Djurhuuskvist7976
A series of chemical cross-linked nanoporous cellulose hydrogels (CCNCGs) were prepared, and their fracture strain increased first and then decreased as the molar ratio of epichlorohydrin (ECH) to the anhydroglucose unit (AGU) of cellulose increased. Two polymer matrices, polycaprolactone (PCL) and polyurethane (PU), were selected to be polymerized in CCNCGs in situ. The fracture strain of CCNCG/PCL and CCNCG/PU nanocomposites in the tensile test showed the same tendency as neat CCNCGs in the hydrated state, regardless of the surrounding environment. The relatively independent motion of the nanocellulose network in the polymer matrix was clearly demonstrated. Possible mechanisms of the nanocellulose's independent motion in the polymer matrix were discussed, implying the potential of independent deformation of the continuous nanocellulose network in the polymer matrix.Glycosylation is one of the most common post-translational modifications (PTM) occurring in a large variety of proteins with important biological functions in human and other higher organisms. Liquid chromatography tandem mass spectrometry (LC-MS/MS) has been routinely used to characterize site-specific protein glycosylation at high throughput in complex glycoproteomic samples. Recently, electron transfer/high-energy collision dissociation (EThcD) was introduced for glycopeptide identification, which offers rich structural information on glycopepides with the fragment ions from the cleavages of both the glycan and the peptide backbone. Herein, we present the software GlycoHybridSeq for automated interpretation of EThcD-MS/MS spectra from glycoproteomic data using a customized scoring function, which enables the functionalities of identifying glycopeptides, characterizing glycosylation sites, and distinguishing some isomeric glycans. We evaluate GlycoHybridSeq on glycoproteomic data collected for cancer biomarker discovery. Selleck GSK2830371 The results showed that it achieved comparable or better performance than that of Byonic and MSFragger. GlycoHybridSeq is released as an open source software and is ready to be used in large-scale glycoproteomic data analyses.Two-dimensional hexagonal boron nitride (h-BN) has received much attention owing to its unique properties and wide range of applications. However, the lack of sufficient active functional groups on the surface coupled with the extremely stable structure restricts the wide application of h-BN. We find that thionyl chloride can corrode commercially available h-BN and generate many through-holes in the thickness direction. Both X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) show that the corroded h-BN contains reactive hydroxyl and a lot of amino groups. The corrosion mechanism is proposed and we conclude that H+ and OH- will affect the defect structure of the corroded h-BN by affecting the generation of boric acid. The thionyl chloride corroded h-BN could improve the thermal conductivity and DC breakdown strength of the composites because of the improved interface. This novel method about corroding h-BN through thionyl chloride is promising for the modification research of h-BN due to its simplicity and efficiency.Deglutition disorders (dysphagia) are common symptoms of a large number of diseases and can lead to severe deterioration of the patient's quality of life. The clinical evaluation of this problem involves an invasive screening, whose results are subjective and do not provide a precise and quantitative assessment. To overcome these issues, alternative possibilities based on wearable technologies have been proposed. We explore the use of ultrathin, compliant, and flexible piezoelectric patches that are able to convert the laryngeal movement into a well-defined electrical signal, with extremely low anatomical obstruction and high strain resolution. The sensor is based on an aluminum nitride thin film, grown on a soft Kapton substrate, integrated with an electrical charge amplifier and low-power, wireless connection to a smartphone. An ad-hoc designed laryngeal motion simulator (LMS), which is able to mimic the motions of the laryngeal prominence, was used to evaluate its performances. The physiological deglutition waveforms were then extrapolated on a healthy volunteer and compared with the sEMG (surface electromyography) of the submental muscles. Finally, different tests were conducted to assess the ability of the sensor to provide clinically relevant information. The reliability of these features permits an unbiased evaluation of the swallowing ability, paving the way to the creation of a system that is able to provide a point-of-care automatic, unobtrusive, and real-time extrapolation of the patient's swallowing quality even during normal behavior.New biodegradable polymers are needed for use in drug delivery systems to overcome the high burst release, lack of sustained drug release, and acidic degradation products frequently observed in current formulations. Commercially available poly(lactide-co-glycolide) (PLGA) is often used for particle drug release formulations; however, it is often limited by its large burst release and acidic degradation products. Therefore, a biocompatible and biodegradable tyrosol-derived poly(ester-arylate) library has been used to prepare a microparticle drug delivery system which shows sustained delivery of hydrophobic drugs. Studies were performed using polymers with varying hydrophilicity and thermal properties and compared to PLGA. Various drug solubilizing cosolvents were used to load model drugs curcumin, dexamethasone, nicotinamide, and acyclovir. Hydrophobic drugs curcumin and dexamethasone were successfully loaded up to 50 weight percent (wt %), and a linear correlation between drug wt % loaded and the particle glass transition temperature (Tg) was observed. Both curcumin and dexamethasone were visible on the particle surface at 20 wt % loading and higher. By adjusting the polymer concentration during particle formation, release rates were able to be controlled. Release studies of dexamethasone loaded particles with a lower polymer concentration showed a biphasic release profile and complete release after 47 days. Particles prepared using a higher polymer concentration showed sustained release for up to 77 days. Comparably, PLGA showed a traditional triphasic release profile and complete release after 63 days. This novel tyrosol-derived poly(ester-arylate) library can be used to develop injectable, long-term release formulations capable of providing sustained drug delivery.