Dixonhyldgaard6716

Z Iurium Wiki

In concurrence with objectives of advanced high level nuclear waste(HLW) management, separation of chemically similar trivalent actinides and lanthanides is accomplished using TALSPEAK (Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes) process on hollow fibre renewable liquid membrane (HFRLM). Permeability coefficient(Kf) of metal ions are determined under varying concentrations of diethylene triamine pentacaetic acid (DTPA) and H+ in the feed solution, containing 241Am with other metal impurities usually occurred in the HLW, and di(2-ethylhexyl) phosphoric acid (HDEHP) in liquid membrane and receiving emulsion phase. Optimized process conditions obtained are 5 ± 0.25 L feed solution containing 0.05 M DTPA, 1 M lactic acid and metal ions under the agitation of 400 ± 15 rpm, receiving phase emulsion of 400 ± 15 mL 2 M HNO3 + 100 mL 0.2 M HDEHP/dodecane under stirring at 650 ± 25 rpm. The Kf of metal ions obtained under optimized process conditions are in the order Am(III)ööSm(III)öNd(III)öSr(II)öPr(III)öU(VI) öY(III)öCe(III)öLa(III). The maximum Kf = 9.24 × 10-3 cm min-1 is obtained for La(III) whereas Sm(III) with Kf = 7.4 × 10-4 cm min-1 is the most difficult lanthanide to separate from Am(III). For the single step process of HFRLM, the decontamination factor obtained for Am is 412. XL177A Agreement between Kf values, determined by model and experimental data are within 10 %.Nowadays, microplastic pollution has been brought into focus for its hazards to aquatic life. However, researches on the electrocatalytic treatment for efficient degradation of microplastics are still insufficient. Herein, an electro-Fenton like (EF-like) technology based on TiO2/graphite (TiO2/C) cathode was put forward to degrade polyvinyl chloride (PVC), a typical microplastic in water. It exhibited a remarkable performance on PVC degradation via cathodic reduction dechlorination and hydroxyl radical (OH) oxidation simultaneously. Besides, the effects of reaction temperature and initial PVC concentration were investigated. Under optimal conditions, the dechlorination efficiency of PVC reached 75 % after potentiostatic electrolysis at -0.7 V vs. Ag/AgCl for 6 h. The intermediate products were explored during the degradation of PVC microplastics. The surface morphologies and molecular weight of PVC changed accordingly. Based on these results, a possible degradation process for PVC was proposed. This work demonstrated that such a heterogeneous EF-like technology using TiO2/C cathode was hopefully to provide an eco-friendly method for microplastic wastewater treatment.Ag-TiO2 nanotube array films with the preferential orientation of crystals were fabricated on ITO glass by magnetron sputtering and anodization. Comprehensive characterization was performed to ascertain the composition and microstructure characteristics of thin films. The photocatalytic activities were evaluated through the reduction of hexavalent chromium (Cr2O72- (Cr (VI)) as a model compound under visible light irradiation. XRD and XPS studies reveal the development of preferred orientation along [001] in anatase TiO2 nanotubes by adjusting the Ag content during magnetron sputtering. Such unusual behavior is attributed to the minimization of anatase (001) surface energy assisted by Ag. The Ag-TiO2 nanotube arrays having preferred crystal orientation exhibit superior separation/transfer of photo-induced charges. Furthermore, the Ag-TiO2 nanotube arrays show improved absorption of visible light due to the SPR effect induced by Ag and the formation of heterojunction between the TNAs and Ag2O. TNA-3Ag exhibits the highest photocatalytic activities by removing 99.1 % Cr (VI) in 90 min under visible light illumination.A novel MnOx@Eu-CeOx catalyst with multiple protective attributes was designed and fabricated using a chemical precipitation method and tested for its low temperature SCR activity. The subject MnOx@Eu-CeOx nanorod catalyst exhibited superior SCR performance and strong SO2-tolerance. The formation of the composite-shell structure enhanced the catalysts' surface acidity and redox performance, which resulted in excellent SCR performance. Moreover, the TG results suggested that the protective effect of the EuOx-CeOx composite-shell effectively reduced the deposition of the surface sulphates. The XPS, XRD analysis results of the subject catalyst together with theoretical calculations provided strong evidence that there was a strong interaction between Mn and Ce in the MnOx@Eu-CeOx. This significant interaction could provide maximum protection to the core from the effect of SO2, which also contributed to the high SO2 resistance of the catalyst. In situ FT-IR results also indicated that the chemisorbed species on MnOx@Eu-CeOx were much more stable in the presence of SO2 compared to Eu-CeOx/MnOx, which resulted in the deposition of significantly less sulphates. This low temperature SCR catalyst with multiple protective attributes, including composite shell, strong interaction and core-shell structure, is the key to long-term resistance to SO2.The novel bifunctional NH2-MIL-125/Co(dmgH)2 composite catalysts with several different Co(dmgH)2 contents that can simultaneously achieve photocatalytic NO removal and hydrogen production were first prepared by a simple and convenient method. The corresponding physical and chemical properties of the composite catalysts were characterized by SEM, XRD, ESR, in situ DRIFTS, etc. The characterization results indicated that the noble-metal-free Co(dmgH)2, which was much cheaper and more available than most noble-metals such as Pt, could be an effective co-catalyst to accelerate the separation of photogenerated electron-hole pairs, further eventually enhancing the photocatalytic efficiency. Under visible-light irradiation for half an hour, the NO removal ratio of NH2-MIL-125/Co(dmgH)2 (3 wt%) increased by 22.7 % compared with the pristine NH2-MIL-125 without Co(dmgH)2 loading. In addition, it was found that Eosin Y dye-sensitized NH2-MIL-125/Co(dmgH)2 (3 wt%) was capable of promoting a hydrogen generation rate of 2195 μmol g-1 h-1 under visible light, which was 12.

Autoři článku: Dixonhyldgaard6716 (Als Forbes)