Dillonfulton9883

Z Iurium Wiki

Arctic top predators are expected to be impacted by increasing temperatures associated with climate change, but the relationship between increasing sea temperatures and population dynamics of Arctic cetaceans remains largely unexplored. Narwhals (Monodon monoceros) are considered to be among the most sensitive of Arctic endemic marine mammals to climate change due to their limited prey selection, strict migratory patterns and high site fidelity. In the context of climate change, we assume that the population dynamics of narwhals are partly influenced by changes in environmental conditions, with warm areas of increasing sea temperatures having lower abundance of narwhals. Using a unique large dataset of 144 satellite tracked narwhals, sea surface temperature (SST) data spanning 25 years (1993-2018) and narwhal abundance estimates from 17 localities, we (1) assessed the thermal exposure of this species, (2) investigated the SST trends at the summer foraging grounds, and (3) assessed the relationship between SST and abundance of narwhals. We showed a sharp SST increase in Northwest, Mideast and Southeast Greenland, whereas no change could be detected in the Canadian Arctic Archipelago (CAA) and in the Greenland Sea. The rising sea temperatures were correlated with the smallest narwhal abundance observed in the Mideast and Southeast Greenland ( 40,000 individuals). These results support the hypothesis that warming ocean waters will restrict the habitat range of the narwhal, further suggesting that narwhals from Mideast and Southeast Greenland may be under pressure to abandon their traditional habitats due to ocean warming, and consequently either migrate further North or locally go extinct.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Traumatic brain injury (TBI) causes brain edema that induces increased intracranial pressure and decreased cerebral perfusion. Decompressive craniectomy has been recommended as a surgical procedure for the management of swollen brain and intracranial hypertension. Proper location and size of a decompressive craniectomy, however, remain controversial and no clinical guidelines are available. Mathematical and computational (in silico) models can predict the optimum geometric conditions and provide insights for the brain mechanical response following a decompressive craniectomy. In this work, we present a finite element model of post-traumatic brain injury and decompressive craniectomy that incorporates a biphasic, nonlinear biomechanical model of the brain. A homogenous pressure is applied in the brain to represent the intracranial pressure loading caused by the tissue swelling and the models calculate the deformations and stresses in the brain as well as the herniated volume of the brain tissue that exits the skull following craniectomy. Simulations for different craniectomy geometries (unilateral, bifrontal and bifrontal with midline bar) and sizes are employed to identify optimal clinical conditions of decompressive craniectomy. The reported results for the herniated volume of the brain tissue as a function of the intracranial pressure loading under a specific geometry and size of craniectomy are exceptionally relevant for decompressive craniectomy planning.

Oxygen and continuous positive airway pressure (CPAP) are primary modes of respiratory support for preterm infants. Animal models, however, have demonstrated adverse unintended effects of hyperoxia and CPAP on lung development. We investigate the effects of combined neonatal hyperoxia and CPAP exposure on airway function and morphology in mice.

Newborn mice were exposed to hyperoxia (40% O

) 24 h/day for 7 consecutive days with or without daily (3 h/day) concomitant CPAP. Two weeks after CPAP and/or hyperoxia treatment ended, lungs were assessed for airway (AW) hyperreactivity and morphology.

CPAP and hyperoxia exposure alone increased airway reactivity compared to untreated control mice. CPAP-induced airway hyperreactivity was associated with epithelial and smooth muscle proliferation. In contrast, combined CPAP and hyperoxia treatment no longer resulted in increased airway reactivity, which was associated with normalization of smooth muscle and epithelial proliferation to values similar to untreated ity. Combined CPAP and hyperoxia normalize smooth muscle and epithelial proliferation to control values. Interaction between CPAP-induced stretch and mild hyperoxia exposure on immature airways has important implications for airway pathophysiology in former preterm infants.Production of environmentally amenable silver nanoparticles (AgNPs) has garnered the interest of the scientific community owing to their broad application primarily in the field of optronics, sensing and extensively in pharmaceuticals as promising antioxidant, antimicrobial and anticancer agents. The current study emphases on production of ecofriendly silver nanoparticles from Brassica oleracea (BO) and investigated their antibacterial, anticancer and antioxidant activity. The characteristics of synthesized BO-AgNPs were studied by ultraviolet-visible spectroscopy, particle size analysis, electro kinetic/zeta potential analysis, and Transmission electron microscope (TEM). A distinctive absorption maximum at 400 nm confirmed the formation of BO-AgNPs and data on TEM analysis have shown that the synthesized nanoparticles were predominantly spherical in shape. The BO-AgNPs obtained were assessed for antibacterial, antioxidant, and cytotoxic ability in MCF-7 cells. The antibacterial activity expressed was maximum against Staphylococcus epidermidis (Gram positive) and Pseudomonas aeruginosa (Gram negative) with DIZ of 14.33 ± 0.57 and 12.0 ± 0.20 mm respectively. Furthermore, the ability of the synthesized green nanoparticles to scavenge free radicals revealed a strong antioxidant activity. The cytotoxicity increased proportionately with increasing concentration of the green synthesized BO-AgNPs with maximum effect at 100 μg/ml and IC50 of 55 μg/ml. In conclusion, the data obtained in the study is reflective of the role of BO-AgNPs as potential and promising antimicrobial agent against bacterial infections and potential anticancer agent in cancer therapy.Selenoproteins are a group of selenocysteine-containing proteins with major roles in cellular antioxidant defense and thyroid hormone metabolism. Selenoprotein expression is determined by hierarchical mechanisms that result in tissue-specific levels. Current data inadequately explain the abundance of various selenoproteins under normal and pathological conditions, including in pancreatic β-cells. Selenocysteine insertion sequence binding protein 2 (SBP2) is a critical protein in selenoprotein translation that also plays an essential role in stabilizing selenoprotein transcripts by antagonizing nonsense-mediated decay (NMD). Importantly, dysfunctional SBP2 is associated with endocrine disorders in humans. Here we describe the impact of induced Sbp2 deficiency in pancreatic β-cells on selenoprotein transcript profiles in the pancreatic islets of C57BL/6J mice. Sex differences were noted in control mice, in which female islets showed 5 selenoproteins decreased and one increased versus male islets. Induced Sbp2 deficiency in pancreatic β-cells altered expression of only 3 selenoprotein transcripts in male islets, whereas 14 transcripts were reduced in female islets. In all cases, decreased transcription was observed in genes known to be regulated by NMD. The differential impact of Sbp2 deletion on selenoprotein transcription between sexes suggests sex-specific hierarchical mechanisms of selenoprotein expression that may influence islet biology and consequentially metabolic disease risk.Reliable and reproducible monitoring of the conformational state of therapeutic protein products remains an unmet technological need. This need is amplified by the increasing number of biosimilars entering the drug development pipeline as many branded biologics are reaching the end of their market exclusivity period. Availability of methods to better characterize protein conformation may improve detection of counterfit and unlicensed therapeutic proteins. In this study, we report the use of a set of modified DNA aptamers with enhanced chemical diversity to probe the conformational state of 12 recombinant human erythropoietin (rHuEPO) therapeutic protein products; one FDA-licensed rHuEPO originator biological product, three rHuEPO products that are approved for marketing in the US or EU as biosimilars, and eight rHuEPO products that are not approved for marketing in the US or EU. We show that several of these modified aptamers are able to distinguish rHuEPO reference products or approved biosimilars from non-licensed rHuEPO products on the basis of differences in binding kinetics and equilibrium affinity constants. These reagents exhibit sensitivity to the conformational integrity of various forms of rHuEPO and as such represent powerful, simple-to-use analytical tools to monitor the conformational integrity of therapeutic-proteins during manufacture and to screen for and identify both substandard and counterfeit products.Crohn's and ulcerative colitis are common inflammatory conditions associated with Inflammatory bowel disease. Owing to the importance of diet based approaches for the prevention of inflammatory gut conditions, the present study was aimed to screen the human isolates of Bifidobacterium strains based on their ability to reduce LPS-induced inflammation in murine macrophage (RAW 264.7) cells and to evaluate prioritized strains for their preventive efficacy against ulcerative colitis in mice. Twelve out of 25 isolated strains reduced the production of LPS-induced nitric oxide and inflammatory cytokines. Furthermore, three strains, B. longum Bif10, B. breve Bif11, and B. longum Bif16 conferred protection against dextran sodium sulfate induced colitis in mice. The three strains prevented shortening of colon, spleen weight, percentage body weight change and disease activity index relative to colitis mice. Lower levels of Lipocalin-2, TNF-α, IL-1β and IL-6 and improved SCFA levels were observed in Bifidobacterium supplemented mice relative to DSS counterparts. Bacterial composition of B. longum Bif10 and B. breve Bif11 fed mice was partly similar to the normal mice, while DSS and B. longum Bif16 supplemented mice showed deleterious alterations. At the genus level, Bifidobacterium supplementation inhibited the abundances of pathobionts such as Haemophilus, Klebsiella and Lachnospira there by conferring protection.Tilapia is one of the most commercially valuable species in aquaculture with over 5 million tonnes of Nile tilapia, Oreochromis niloticus, produced worldwide every year. It has become increasingly important to keep track of the inheritance of the selected traits under continuous improvement (e.g. growth rate, size at maturity or genetic gender), as selective breeding has also resulted in genes that can hitchhike as part of the process. The goal of this study was to generate a Local Ancestry Interence workflow that harnessed existing tilapia genotyping-by-sequencing studies, such as Double Digest RAD-seq derived Single-Nucleotide Polymorphism markers. We developed a workflow and implemented a suite of tools to resolve the local ancestry of each chromosomal locus based on reference panels of tilapia species of known origin. We used tilapia species, wild populations and breeding programmes to validate our methods. The precision of the pipeline was evaluated on the basis of its ability to identify the genetic makeup of samples of known ancestry.

Autoři článku: Dillonfulton9883 (Zhang Sweet)