Didriksensmart5741

Z Iurium Wiki

In this paper, we experimentally study transient dynamics of spin polarized atoms in the spin-exchange-relaxation-free (SERF) regime with a single-beam configuration. We pumped atoms with a weak detuning pumping beam, along with a sequence of magnetic field pulses orthogonal to the pumping beam were applied. The dynamics of atomic spin, which experiences Larmor precession under the perturbation of magnetic field, is detected by the transmitted pumping beam. Benefited from the long coherence time of atomic spin in the SERF regime, the dependence of precession frequency and decay rate, which is equal to the magnetic resonance linewidth of atomic spin, on magnetic fields is studied with the transient dynamics of atomic spin in the limit of low spin polarization. Moreover, we demonstrate that coil constants can be calibrated by analyzing the precession frequency of the transient dynamics of atomic spin. And the experimental results show that the coil constants are 114.25 ± 0.02 nT/mA and 114.12 ± 0.04 nT/mA in x- and y-axis, respectively. click here This method is particularly applicable to study the atomic spin dynamics and calibrate the coil constant in situ of a miniature single-beam SERF magnetometer.Varifocal lenses (especially large-aperture lenses), which are formed by two immiscible liquids based on electrowetting and dielectrophoretic effects, are usually modulated by an external high-voltage power source, with respect to the volume of the liquid. Hence, a Maxwell force-driven liquid lens with large aperture and low threshold voltage is proposed. With the polarization effect, the accumulated negative charges on the surface of the polyvinyl chloride/dibutyl adipate gel near the anode results in the generation of Maxwell force and deformation with cosine wave. The effect of surface roughness on wettability is linear with the cosine of the contact angle, leading to a sharp reduction in the threshold voltage when the volume of liquid is increased. When the volume of the droplet increases to 80 μl, the threshold voltage is about 10 V. Hence, the aperture of polarization effect-driven liquid lenses can potentially reach the centimeter level. Moreover, when Maxwell force increases, the lens ranges from concave to convex lens, which holds great promise in rich application such as those in light-sheet microscopes and virtual reality systems.Pure quartic soliton (PQS) is a new class of solitons demonstrated in recent years and provides innovations in nonlinear optics and its applications. Generating PQSs in micro-cavities offers a novel way to achieve coherent microcombs, presenting a promising application potential. Here we numerically investigate the PQS generation in a dispersion-engineered aluminum nitride (AlN) micro-cavity. To support PQS, a well-designed shallow-trench waveguide structure is adopted, which is feasible to be fabricated. The structure exhibits a dominant fourth-order dispersion reaching up to -5.35×10-3 ps4/km. PQSs can be generated in this AlN micro-cavity in the presence of all-order-dispersion and stimulated Raman scattering. Spectral recoil and soliton self-frequency shift are observed in the PQS spectrum. Furthermore, we find that due to the narrow Raman gain spectrum of crystalline AlN, the PQS evolves directly to chaos rather than turning into a breather. The threshold pump power with which the PQS turns into chaos is also theoretically calculated, which squares with the simulation results.Freeform surfaces play an important role in modern optical systems with compactness and better performance. The fabrication tools tend to impart a structured signature on optical surfaces, called ripple errors, during the freeform surface manufacturing process. The description and extraction of ripple errors for freeform surface fabrication and testing have attracted extensive attention. In this paper, we develop a fast and accurate method to describe ripple errors for the large aperture based on Fourier model coupling. The polynomial expression is transformed into Fourier series form and surface errors are reconstructed by frequency feature extraction combining with the least square method. The high accuracy and efficiency of the proposed method for representing and filtering ripple errors consuming little computer memory are demonstrated using real experimental data. The proposed method offers a robust and powerful tool not only suitable for surface error characterization but also for image filtering and analysis.A variety of mechanisms can induce distortions in the output signals of a homodyne laser Doppler vibrometer (LDV). In this paper, the nonlinear LDV distortions caused by a strong second-order ghost reflection originating from lens flares are theoretically explained and analyzed. We propose a simple compensation method to mitigate this distortion. The performance and limitations of this method are also explained both in simulation and in experiment.The interaction of light with photonic resonators is determined by the eigenmodes of the system. Modal theories based on quasinormal modes provide a natural tool to calculate and understand light scattering by nanoresonators. We show that, in the case of resonators made of absorbing dielectric materials, eigenmodes with zero eigenfrequency (static modes) play a key role in the modal formalism. The excitation of static modes builds a non-resonant contribution to the modal expansion of the scattered field. This non-resonant term plays a crucial physical role since it largely contributes to the off-resonance signal to which resonances are added in amplitude, possibly leading to interference phenomena and Fano resonances. By considering light scattering by a silicon nanosphere, we quantify the impact of static modes. This study shows that the importance of static modes is not just formal. Static modes are of prime importance in an expansion truncated to only a few modes.Optical devices like virtual reality (VR) headsets present challenges in terms of vergence-accommodation conflict that leads to visual fatigue for the user over time. Lenses available to meet these challenges include liquid crystal (LC) lenses, which possess a response time in the millisecond range. This response time is slow, while accessing multiple focal lengths. A ferroelectric liquid crystal (FLC) has a response time in the microsecond range. In this article, we disclose a switchable lens device having a combination of the fast FLC-based polarization rotation unit and a passive polarization-dependent LC lens. A cascaded combination of three such lens units allows access to eight different focal points quite rapidly and can be a convenient device for VR applications.

Autoři článku: Didriksensmart5741 (Browning Gilbert)