Didriksenbendsen8652

Z Iurium Wiki

93.3%; 84.6%), and rhythmic delta activity (P = 0.0006; 92.3%; 73.3%). Cerebral cortical hyperperfusion was significantly associated with non-convulsive status epilepticus (P = 0.0017; 100%; 57.1%) and periodic discharges (P = 0.0349; 100%; 30.8%), but not with rhythmic delta activity. Thalamocortical hyperperfusion could be a new biomarker of non-convulsive status epilepticus according to the Salzburg criteria in critically ill patients. Specific thalamic hyperexcitability might modulate the periodic discharges and rhythmic delta activity associated with non-convulsive status epilepticus. Impaired consciousness without convulsions could be caused by predominant thalamic hyperperfusion together with cortical hyperperfusion but without ictal epileptiform discharges.The aim of this study was to explore the utility of the serum biomarkers neurofilament light chain, fibroblast growth factor 21 and growth and differentiation factor 15 in diagnosing primary mitochondrial disorders. We measured serum neurofilament light chain, fibroblast growth factor 21 and growth and differentiation factor 15 in 26 patients with a genetically proven mitochondrial disease. Fibroblast growth factor 21 and growth and differentiation factor 15 were measured by enzyme-linked immunosorbent assay and neurofilament light chain with the Simoa assay. Neurofilament light chain was highest in patients with multi-systemic involvement that included the central nervous system such as those with the m.3242A>G mutation. Mean neurofilament light chain was also highest in patients with epilepsy versus those without [49.74 pg/ml versus 19.7 pg/ml (P = 0.015)], whereas fibroblast growth factor 21 and growth and differentiation factor 15 levels were highest in patients with prominent myopathy, such as those with single-mitochondrial DNA deletion. Our results suggest that the combination of neurofilament light chain, fibroblast growth factor 21 and growth and differentiation factor 15 is useful in the diagnostic evaluation of mitochondrial disease. Growth and differentiation factor 15 and fibroblast growth factor 21 identify those with muscle involvement, whereas neurofilament light chain is a clear marker for central nervous system involvement independent of underlying mitochondrial pathology. Levels of neurofilament light chain appear to correlate with the degree of ongoing damage suggesting, therefore, that monitoring neurofilament light chain levels may provide prognostic information and a way of monitoring disease activity.The clinical link between spatial and non-spatial attentional aspects in patients with hemispatial neglect is well known; in particular, an increase in alerting can transitorily help to allocate attention towards the contralesional side. In models of attention, this phenomenon is postulated to rely on an interaction between ventral and dorsal cortical networks, subtending non-spatial and spatial attentional aspects, respectively. However, the exact neural underpinnings of the interaction between these two networks are still poorly understood. In the present study, we included 80 right-hemispheric patients with subacute stroke (50% women; age range 24-96), 33 with and 47 without neglect, as assessed by paper-pencil cancellation tests. Afimoxifene The patients performed a computerized task in which they were asked to respond as quickly as possible by button-press to central targets, which were either preceded or not preceded by non-spatial, auditory warning tones. Reaction times in the two different conditions were measured. In neglect patients, a warning tone, enhancing activity within the ventral attentional 'alerting' network, could boost the reaction (in terms of shorter reaction times) of the dorsal attentional network to a visual stimulus up to the level of patients without neglect. Critically, using voxel-based lesion-symptom mapping analyses, we show that this effect significantly depends on the integrity of the right anterior insula and adjacent inferior frontal gyrus, i.e., right-hemispheric patients with lesions involving these areas were significantly less likely to show shorter reaction times when a warning tone was presented prior to visual target appearance. We propose that the right anterior insula and inferior frontal gyrus are a critical hub through which the ventral attentional network can 'alert' and increase the efficiency of the activity of the dorsal attentional network.Gliomas are neoplasms that arise from glial cell origin and represent the largest fraction of primary malignant brain tumours (77%). These highly infiltrative malignant cell clusters modify brain structure and function through expansion, invasion and intratumoral modification. Depending on the growth rate of the tumour, location and degree of expansion, functional reorganization may not lead to overt changes in behaviour despite significant cerebral adaptation. Studies in simulated lesion models and in patients with stroke reveal both local and distal functional disturbances, using measures of anatomical brain networks. Investigations over the last two decades have sought to use diffusion tensor imaging tractography data in the context of intracranial tumours to improve surgical planning, intraoperative functional localization, and post-operative interpretation of functional change. In this study, we used diffusion tensor imaging tractography to assess the impact of tumour location on the white matter structural network. To better understand how various lobe localized gliomas impact the topology underlying efficiency of information transfer between brain regions, we identified the major alterations in brain network connectivity patterns between the ipsilesional versus contralesional hemispheres in patients with gliomas localized to the frontal, parietal or temporal lobe. Results were indicative of altered network efficiency and the role of specific brain regions unique to different lobe localized gliomas. This work draws attention to connections and brain regions which have shared structural susceptibility in frontal, parietal and temporal lobe glioma cases. This study also provides a preliminary anatomical basis for understanding which affected white matter pathways may contribute to preoperative patient symptomology.

Autoři článku: Didriksenbendsen8652 (Sivertsen Calderon)