Dickinsonwilliam3808
The genetic organisation of bla
has already been described in a P. aeruginosa isolate from England, but both isolates differed significantly in their sequence types (ST111/ST235). Analysis of the genetic environment of the bla
gene also revealed high homology to a plasmid from a Klebsiella pneumoniae isolate.
To our knowledge, this is the first report of bla
in a clinical P. aeruginosa isolate in Germany which emphasises the ongoing spread of yet unusual carbapenemases among different Gram-negative species and therefore complicating their detection in routine laboratories.
To our knowledge, this is the first report of blaOXA-181 in a clinical P. aeruginosa isolate in Germany which emphasises the ongoing spread of yet unusual carbapenemases among different Gram-negative species and therefore complicating their detection in routine laboratories.Infections are known to cause tumours though more attributed to viruses. Strong epidemiological links suggest association between bacterial infections and cancers as exemplified by Helicobacter pylori and Salmonella spp. Infection with Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), has been reported to predispose patients to lung cancers and possibly in other organs as well. While this etiopathogenesis warrant inclusion of M. tb in IARC's (International Agency for Research on Cancer) classified carcinogenic agents, the lack of well-defined literature and direct experimental studies have barred the research community from accepting the role of M. tb as a carcinogen. The background research, case studies, and experimental data extensively reviewed in Roy et al., 2021; provoke the debate for elucidating carcinogenic properties of M. tb. Moreover, proper, timely and correct diagnosis of both diseases (which often mimic each other) will save millions of lives that are misdiagnosed. In addition, use of Anti Tubercular therapy (ATT) in misdiagnosed non-TB patients contributes to drug resistance in population thereby severely impacting TB disease control measures. Research in this arena can further aid in saving billions of dollars by preventing the superfluous use of cancer drugs. In order to achieve these goals, it is imperative to identify the underlying mechanism of M. tb infection acting as major risk factor for cancer.Given the decline of natural fish abundance and diversity, a ban on pen-culture and fishing has been imposed on floodplain lakes along the Yangtze River. In order to examine the recovery efficiency of fish faunas, we compared the changes in multidimensional (α and β) diversity in the Shengjin Lake between pen-culture stage (PS) and recovery stage (RS). Our results demonstrated significant variations in fish community composition, with distinct populational restoration in wild species of high trophic level and river-lake migratory species. The higher abundance of wild and migratory species in RS implied the enhanced dispersal and exchange process of fish individuals with the elimination of net pens. Despite significant variations of community composition, the α and β diversity indices exhibited non-significant change between PS and RS. However, our study still revealed the recovery of natural seasonal community dynamics, since there were significant variations of both α and β diversity between high-water (HW) and low-water (LW) seasons in RS. The significant higher α diversity (S, d, H') in HW indicated flooding induced fish supplements in floodplain lakes, due to the well-developed breeding sites, nurseries and refuges provided by floodplain lakes. Meanwhile, the significant lower βSOR and βSIM in HW implied the homogenized communities during flooding seasons, which can be ascribed to better hydrological connectivity of various habitats and more even distribution of fish faunas triggered by flood pulses. The reappearance of natural seasonal variations in multidimensional (α and β) diversity indicate the initial recovery of fish faunas. There is a pressing need for prolonged surveillance to explore the recovery mechanism of fish assemblage. Meanwhile, our results also highlight the importance of conserving the lacustrine connectivity and seasonal flooding for the recovery of fishery resources in the floodplain lakes.The alarming output of waste activated sludge (WAS) from industries requires proper management routes to minimize its impact on the environment during disposal. Pyrolysis is a feasible way of processing and valorizing WAS into higher-value products of alternate use. Despite extensive research into the potential of WAS through pyrolysis, the technology's long-term viability and environmental impact have yet to be fully revealed. In addition, the environmental effects of utilizing different pyrolysis atmosphere (N2 or CO2) has not been studied before, although benefits of CO2 reactivity during pyrolysis have been discovered. This study evaluates the process's environmental impact, carbon footprint, and bioenergy yield when different pyrolysis atmospheres are used. The global warming potential (GWP) for a functional unit of 1 t of dried WAS is 203.81 kg CO2 eq. The heat required during pyrolysis contributes the most (63.7%) towards GWP due to high energy usage, followed by the drying process (23.6%). Transportatopogenic CO2, which helps reduce global warming. This work demonstrates microwave pyrolysis as a negative emission, bioenergy-producing approach for WAS disposal and valorization.A novel aerator for enhancing the oxygen transfer rate and efficiency, named multistage vortex aerator (MVA), was developed. It uses vortex flow in repeated stages to increase the gas-liquid interfacial area and to decrease the thickness of the stagnant layer at the interface between the two phases. The basic characteristics of oxygen transfer using this aerator were investigated using the American Society of Civil Engineers standard procedure. The MVA could rapidly transfer oxygen to water to a concentration higher than 40 mg/L in 60 min owing to the effect of high purity oxygen, additional pressure induced by water and gas, and vortex flow dynamics. A gas transfer model was developed for describing the non-steady state operation of the aerator. This model is based on the mass and molar balances of oxygen in gas and water. It could successfully simulate the DO change inside the aerator. This study can help better understand the oxygen transfer mechanism and evaluate the performance of the new aerator at the various temperatures, pressures, and gas compositions found in diverse environmental systems.Willow (Salix caprea), birch (Betula pendula) and aspen (Populus tremula) are common pioneer woody species, however little is known about colonization strategies in large-scale disturbances. this website Here we have compared the strategies of establishment of these pioneer woody species in unreclaimed sites on a large (1957 ha) spoil heap in Czechia. For all species, seedlings numbers peaked in the 17 year old (successional age - time since overburden heaping) plot, suggesting that initial soil development promotes seedling establishment while covering of the surface by litter and organic layers reduces the establishment of pioneer species. The proportion of willow decreased from the edge of the heap and analysis of the age structure suggests that willow establishment was correlated with the presence of older willows in the vicinity of willows of certain ages (13 and 23 years being particularly important). The proportion of birch increased with its distance from the heap edge, and it is correlated with suitable weather cs over a long distance in low numbers but when some trees are established it spreads massively locally by clones.Revealing the patterns and their mechanisms of microbial community in water transfer projects, especially in inter-basin water transfer projects, is the premise of biohazard warning, water quality monitoring and sustainable management of water resources. Using a river and impounded lakes from the eastern route of South-to-North Water Transfer project as a model system, we studied the diversity and assembly patterns of bacterial communities in artificially connected ecosystems and their influencing factors. Our results showed that water quality improved during the water transfer period (WTP). Further, the latitudinal pattern of bacterioplankton was reversed, which was mainly due to the change of evenness caused by water transfer and had no significant correlation with water quality parameters. Importantly, the spatial heterogeneity of the bacterial communities decreased during the WTP, and the differences in the communities between the impounded lakes and river was more significant in the non-water transfer period (NWTP) than in the WTP, which was the result of water transfer and water quality. Overall, bacterial community was largely shaped by stochastic processes. The bacterial communities had a higher migration rate during the WTP than during the NWTP. We believe that the water transfer increased the risk of biological homogenization while improving water quality. Combined, our work systematically discusses the microbial community pattern and mechanism in the inter-basin water transfer project, providing theoretical support for inter-basin water transfer project planning management and ecological environment protection.To reduce greenhouse gas emissions from organic waste, anaerobic digestion has created new opportunities for energy and nutrient recovery from these wastes. However, the use of certain organic wastes in anaerobic digestion is limited due to their atypical physicochemical characteristics (e.g. unbalanced carbon to nitrogen ratio, high ash concentration). Deinking sludge is a residue from the paper recycling industry and is one of such substrates. This study aims at evaluating the impact of deinking sludge (DS) addition into a conventional co-digestion mixture on methane production and digestate quality. To this end, an integrated method was proposed, combining the analysis of physicochemical and biodegradability characteristics with parsimonious modeling using the SYS-Metha tool. The measured characteristics of the deinking sludge showed that its potential use in mono-digestion conditions is very limited. When co-digested with food waste and municipal sludge, no significant synergies or antagonisms were found. Based on these experiments, model simulations were executed to determine the optimal conditions for co-digestion with food waste and municipal sludge. A maximum of 22% of deinking sludge on a fresh mass basis can be added into a co-digestion mixture to achieve proper wet anaerobic digestion conditions. Regarding digestate quality, the addition of DS reduced nutrient and contaminants concentrations, which have an impact on digestate management, particularly for land application. Overall, the proposed methodology in this study allows determining optimal co-digestion mixtures and highlighted the limits needing further investigation under pilot/real conditions.The development of denitrifying polyphosphate accumulating organisms (DPAOs) presents a strategy to carbon competition between denitrifying bacteria and phosphorus removing bacteria. However, low temperature inhibits the rate of enzyme-catalyzed and substrate diffusion during denitrifying phosphorus removal (DPR). Therefore, the present study assessed the addition of NQS (100 μmol/L) for enhancing the removal of TP and TN in DPR reactors operated at alternating anaerobic and anoxic phases and different influent phosphate concentrations. The results showed that the removal efficiency of TP and TN in NQS-DPR system at 10 °C were 99.9% and 42.0%, respectively, which were 2.1 and 2.0 times higher than that of DPR system. Adding NQS significantly alleviated the increase of pH under anoxic condition and decreased the ORP value of the reactor, which in turn enhanced the PHAs accumulation process. The determination of functional genes (nirK, narG and phoD) showed that Dechloromonas, Lentimicrobium, and Terrimonas were the dominant functional bacteria in NQS-DPR system at 10 °C with the relative abundance of 3.