Dickersondrew2122

Z Iurium Wiki

This Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31  μeV. This search utilizes the combination of a low-noise Josephson parametric amplifier and a large-cavity haloscope to achieve unprecedented sensitivity across this mass range. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics.It is now experimentally possible to entangle thousands of qubits, and efficiently measure each qubit in parallel in a distinct basis. To fully characterize an unknown entangled state of n qubits, one requires an exponential number of measurements in n, which is experimentally unfeasible even for modest system sizes. By leveraging (i) that single-qubit measurements can be made in parallel, and (ii) the theory of perfect hash families, we show that all k-qubit reduced density matrices of an n qubit state can be determined with at most e^O(k)log^2(n) rounds of parallel measurements. We provide concrete measurement protocols which realize this bound. As an example, we argue that with near-term experiments, every two-point correlator in a system of 1024 qubits could be measured and completely characterized in a few days. This corresponds to determining nearly 4.5 million correlators.We report strong chiral coupling between magnons and photons in microwave waveguides that contain chains of small magnets on special lines. Large magnon accumulations at one edge of the chain emerge when exciting the magnets by a phased antenna array. This mechanism holds the promise of new functionalities in nonlinear and quantum magnonics.We use the Low Frequency Array (LOFAR) to probe the dynamics of the stepping process of negatively charged plasma channels (negative leaders) in a lightning discharge. We observe that at each step of a leader, multiple pulses of vhf (30-80 MHz) radiation are emitted in short-duration bursts ( less then 10  μs). This is evidence for streamer formation during corona flashes that occur with each leader step, which has not been observed before in natural lightning and it could help explain x-ray emission from lightning leaders, as x rays from laboratory leaders tend to be associated with corona flashes. Surprisingly, we find that the stepping length is very similar to what was observed near the ground, however with a stepping time that is considerably larger, which as yet is not understood. These results will help to improve lightning propagation models, and eventually lightning protection models.An intrinsic feature of turbulent flows is an enhanced rate of mixing and kinetic energy dissipation due to the rapid generation of small-scale motions from large-scale excitation. The transfer of kinetic energy from large to small scales is commonly attributed to the stretching of vorticity by the strain rate, but strain self-amplification also plays a role. Previous treatments of this connection are phenomenological or inexact, or cannot distinguish the contribution of vorticity stretching from that of strain self-amplification. In this Letter, an exact relationship is derived which quantitatively establishes how intuitive multiscale mechanisms such as vorticity stretching and strain self-amplification together actuate the interscale transfer of energy in turbulence. Numerical evidence verifies this result and uses it to demonstrate that the contribution of strain self-amplification to energy transfer is higher than that of vorticity stretching, but not overwhelmingly so.We consider current-current deformations that generalize TT[over ¯] ones, and show that they may be also introduced for integrable spin chains. In analogy with the integrable QFT setup, we define the deformation as a modification of the S matrix in the Bethe equations. Using results by Bargheer, Beisert and Loebbert we show that the deforming operator is composite and constructed out of two currents on the lattice; its expectation value factorizes like for TT[over ¯]. Such a deformation may be considered for any combination of charges that preserve the model's integrable structure.We show that a momentum-space meron spin texture for electromagnetic fields in free space can be generated by controlling the interaction of light with a photonic crystal slab having a nonzero Berry curvature. These spin textures in momentum space have not been previously noted either in electronic or photonic systems. Breaking the inversion symmetry of a honeycomb photonic crystal gaps out the Dirac cones at the corners of Brillouin zone. The pseudospin textures of photonic bands near the gaps exhibit a meron or antimeron. Unlike the electronic systems, the pseudospin texture of the photonic modes manifests directly in the spin (polarization) texture of the leakage radiation, as the Dirac points can be above the light line. Such a spin texture provides a direct approach to visualize the local Berry curvature. Our work highlights the significant opportunities of using photonic structures for the exploration of topological spin textures, with potential applications towards topologically robust ways to manipulate polarizations and other modal characteristics of light.Optomechanical couplings involve both beam splitter and two-mode-squeezing types of interactions. While the former underlies the utility of many applications, the latter creates unwanted excitations and is usually detrimental. In this Letter, we propose a simple but powerful method based on cavity parametric driving to suppress the unwanted excitation that does not require working with a deeply sideband-resolved cavity. Our approach is based on a simple observation as both the optomechanical two-mode-squeezing interaction and the cavity parametric drive induce squeezing transformations of the relevant photonic bath modes, they can be made to cancel one another. We illustrate how our method can cool a mechanical oscillator below the quantum backaction limit, and significantly suppress the output noise of a sideband-unresolved optomechanical transducer.Higgsino has been intensively searched for in the LHC experiments in recent years. Currently, there is an uncharted region beyond the LEP Higgsino mass limit where the mass splitting between the neutral and charged Higgsinos is around 0.3-1 GeV, which is unexplored by either the soft di-lepton or disappearing track searches. Selleckchem KG-501 This region is, however, of great importance from a phenomenological point of view, as many supersymmetric models predict such a mass spectrum. In this Letter, we propose a possibility of filling this gap by using a soft microdisplaced track in addition to the monojet event selection, which allows us to discriminate a signature of the charged Higgsino decay from the standard model background. It is found that this new strategy is potentially sensitive to a Higgsino mass of ≲180(250)  GeV at the LHC Run2 (HL-LHC) for a charged-neutral mass splitting of ≃0.5  GeV.We present resistivity and thermal-conductivity measurements of superconducting FeSe in intense magnetic fields up to 35 T applied parallel to the ab plane. At low temperatures, the upper critical field μ_0H_c2^ab shows an anomalous upturn, while thermal conductivity exhibits a discontinuous jump at μ_0H^*≈24  T well below μ_0H_c2^ab, indicating a first-order phase transition in the superconducting state. This demonstrates the emergence of a distinct field-induced superconducting phase. Moreover, the broad resistive transition at high temperatures abruptly becomes sharp upon entering the high-field phase, indicating a dramatic change of the magnetic-flux properties. We attribute the high-field phase to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state, where the formation of planar nodes gives rise to a segmentation of the flux-line lattice. We point out that strongly orbital-dependent pairing as well as spin-orbit interactions, the multiband nature, and the extremely small Fermi energy are important for the formation of the FFLO state in FeSe.Carrying orbital angular momentum per photon, the optical vortex has elicited widespread interest. Here, we demonstrate that dual coaxial longitudinal polarization vortices can appear upon a nonparaxial propagation of a tightly focused Pancharatnam-Berry tailored Laguerre-Gaussian beam. Most importantly, it is capable of accessing arbitrary independent topological charges for both vortices, as well as predesigned tunable spacing distances between them.We report high-resolution angle-resolved photoemission measurements on single crystals of Pt_2HgSe_3 grown by high-pressure synthesis. Our data reveal a gapped Dirac nodal line whose (001) projection separates the surface Brillouin zone in topological and trivial areas. In the nontrivial k-space range, we find surface states with multiple saddle points in the dispersion, resulting in two van Hove singularities in the surface density of states. Based on density-functional theory calculations, we identify these surface states as signatures of a topological crystalline state, which coexists with a weak topological phase.Lipid rafts serve as anchoring platforms for membrane proteins. Thus far they escaped direct observation by light microscopy due to their small size. Here we used differently colored dyes as reporters for the registration of both ordered and disordered lipids from the two leaves of a freestanding bilayer. Photoswitchable lipids dissolved or reformed the domains. Measurements of domain mobility indicated the presence of 120 nm wide ordered and 40 nm wide disordered domains. These sizes are in line with the predicted roles of line tension and membrane undulation as driving forces for alignment.Perturbative corrections to general relativity alter the expressions for both the entropy of black holes and their extremality bounds. We prove a universal relation between the leading corrections to these quantities. The derivation is purely thermodynamic and the result also applies beyond the realm of gravitational systems. In scenarios where the correction to the entropy is positive, our result proves that the perturbations decrease the mass of extremal black holes, when holding all other extensive variables fixed in the comparison. This implies that the extremality relations of a wide class of black holes display weak gravity conjecture-like behavior.To clarify the role of wetting properties on the damping of liquid oscillations, we studied the decay of oscillations of liquid columns in a U-shaped tube with controlled surface conditions. In the presence of sliding triple lines, oscillations are strongly and nonlinearly damped, with a finite-time arrest and a dependence on initial amplitude. We reveal that contact angle hysteresis explains and quantifies this solidlike friction.Cavity input-output relations (CIORs) describe a universal formalism relating each of the far-field amplitudes outside the cavity to the internal cavity fields. Conventionally, they are derived based on a weak-scattering approximation. In this context, the amplitude of the off-resonant field remains nearly unaffected by the cavity, with the high coupling efficiency into cavity modes being attributed to destructive interference between the transmitted (or reflected) field and the output field from the cavity. In this Letter, we show that, in a whispering gallery resonator-waveguide coupled system, in the strong-scattering regime, the off-resonant field approaches to zero, but more than 90% coupling efficiency can still be achieved due to the Purcell-enhanced channeling. As a result, the CIORs turn out to be essentially different than in the weak-scattering regime. With this fact, we propose that the CIOR can be tailored by controlling the scattering strength. This is experimentally demonstrated by the transmission spectra exhibiting either bandstop or bandpass-type behavior according to the polarization of the input light field.

Autoři článku: Dickersondrew2122 (Eliasen McCain)