Dickensmunkholm1856
s study shows that TL signal reproducibility is not affected by a low magnetic field. Nevertheless, absolute calibration coefficients of the individual detectors indicate a dependency on the magnetic field. Hence, a calibration at the appropriate LINAC type is recommended. Furthermore, the previously established renormalization method for PG was applied to measurements at a MR-LINAC and was verified as suitable for evaluations of homogeneous dose distribution in the target volume.Calcific aortic stenosis (CAS) is associated with advanced age and comorbidities, therefore a non-invasive therapy for it would be beneficial. We previously demonstrated that ultrasound therapy improved calcified bioprosthetic valve function in an open chest model. For translational applications, we tested non-invasive ultrasound therapy (NIUT) transthoracically on swine aortic valves and investigated the need for antithrombotic treatment as a follow-up. Primary objective feasibility and safety of NIUT. Secondary objectives occurrence, severity and evolution of side effects during therapy and at 1 month follow-up. The device (Valvosoft, Cardiawave) consisted of an electronically steered multi-element transducer and a 2D echocardiographic probe. Three groups of swine received treatment on aortic valves NIUT (group 1; n = 10); NIUT and 1 month antithrombotic treatment (group 2; n = 5); sham group (group 3; n = 4). Feasibility was successfully reached in all treated swine (n = 15) and no life-threatening arrhythmia were detected. Non-sustained ventricular tachycardia occurred during the procedure in seven swine. Decrease or interruption of NIUT ended arrhythmia. Histopathology revealed no valve or surrounding tissue damage and echocardiography revealed no valvular dysfunction. Only one animal had side effects [right ventricle (RV) dilatation], but the RV normalized after therapy cessation with no sequelae at follow-up. No disturbance in biological markers nor valve thrombosis were observed at follow-up. Antithrombotic treatment did not demonstrate any advantage. Survival at 30 d was 100%. We demonstrated, in vivo, the feasibility and safety of transthoracic NIUT on aortic valves in a swine model without serious adverse events. We expect this first-time transthoracic delivery of NIUT to pave the way towards a new non-invasive approach to valve softening in human CAS to restore valve function.Injection of tissues with senescent cells induces changes that mimic aging, and this process is delayed in mice engineered to eliminate senescent cells, which secrete proinflammatory cytokines, including C-C motif chemokine ligand 2 (Ccl2). Circulating levels of Ccl2 correlate with age, but the impact of Ccl2 on tissue homeostasis has not been established. We generated an experimental model by crossbreeding mice overexpressing Ccl2 with progeroid mice bearing a mutation in the lamin A (Lmna) gene. Wild-type animals and progeroid mice that do not overexpress Ccl2 were used as controls. Ccl2 overexpression decreased the lifespan of the progeroid mice and induced the dysregulation of glycolysis, the citric acid cycle and one-carbon metabolism in skeletal muscle, driving dynamic changes in energy metabolism and DNA methylation. This impact on cellular bioenergetics was associated with mitochondrial alterations and affected cellular metabolism, autophagy and protein synthesis through AMPK/mTOR pathways. The data revealed the ability of Ccl2 to promote death in mice with accelerated aging, which supports its putative use as a biomarker of an increased senescent cell burden and for the assessment of the efficacy of interventions aimed at extending healthy aging.Telomeres are non-coding DNA sequences that protect chromosome ends and shorten with age. Short telomere length (TL) is associated with chronic diseases and immunosenescence. The main risk factor for mortality of coronavirus disease 2019 (COVID-19) is older age, but outcome is very heterogeneous among individuals of the same age group. Therefore, we hypothesized that TL influences COVID-19-related outcomes. In a prospective study, we measured TL by Flow-FISH in 70 hospitalized COVID-19 patients and compared TL distribution with our reference cohort of 491 healthy volunteers. We also correlated TL with baseline clinical and biological parameters. We stained autopsy lung tissue from six non-survivor COVID-19 patients to detect senescence-associated β-galactosidase activity, a marker of cellular aging. Selleckchem Colivelin We found a significantly higher proportion of patients with short telomeres ( less then 10th percentile) in the COVID-19 patients as compared to the reference cohort (P less then 0.001). Short telomeres were associated with a higher risk of critical disease, defined as admission to intensive care unit (ICU) or death without ICU. TL was negatively correlated with C-reactive protein and neutrophil-to-lymphocyte ratio. Finally, lung tissue from patients with very short telomeres exhibit signs of senescence in structural and immune cells. Our results suggest that TL influences the severity of the disease.Morbidity and mortality of coronavirus disease 2019 (COVID-19) is age-dependent. It remains unclear whether vertical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs during pregnancy and how such infection will affect fetal development. Here, we performed single-cell transcriptomic analysis of placenta and other tissues from fetuses in comparison with those from adults using public-available datasets. Our analysis revealed that a very small proportion of trophoblast cells expressed the Angiotensin I Converting Enzyme 2 (ACE2) gene, suggesting a low possibility of vertical transmission of SARS-CoV-2 from mother to fetus during pregnancy. We found that the fetal adrenal gland, heart, kidney and stomach were susceptible to SARS-CoV-2 infection, because these organs contained cell clusters that expressed high levels of the ACE2 gene. In particular, a higher proportion of ACE2-expressing cell clusters in the adrenal gland and kidney also expressed the Transmembrane Serine Protease 2 (TMPRSS2) gene compared with other organs. Surprisingly, ACE2-expressing type II alveolar (AT2) equivalent cells were absent in fetal lungs. This is in sharp contrast to adult lungs. As ACE2 expression is regulated by various conditions, including oxygen concentration, inflammation and smoking, caution is warranted to avoid triggering potential ACE2 expression in fetal and placental tissue.