Dentonbengtson4586

Z Iurium Wiki

In summary, characteristic HIV-1 integration site features are preestablished as early as during primary HIV-1 infection and are found in both resting and activated CD4+ T cells.Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in β cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects β cell function under nutritional stress, PLIN2 was downregulated in mouse β cells, INS1 cells, and human islet cells. β Cell-specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in β cells has an important role in preserving insulin secretion, β cell metabolism, and mitochondrial function under nutritional stress.Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) or inactivating mutations in guanylyl cyclase-B (GC-B), also known as NPR-B or Npr2, cause short-limbed dwarfism. FGFR3 activation causes dephosphorylation and inactivation of GC-B, but the contribution of GC-B dephosphorylation to achondroplasia (ACH) is unknown. GC-B7E/7E mice that express a glutamate-substituted version of GC-B that cannot be inactivated by dephosphorylation were bred with mice expressing FGFR3-G380R, the most common human ACH mutation, to determine if GC-B dephosphorylation is required for ACH. Crossing GC-B7E/7E mice with FGFR3G380R/G380R mice increased naso-anal and long (tibia and femur), but not cranial, bone length twice as much as crossing GC-B7E/7E mice with FGFR3WT/WT mice from 4 to 16 weeks of age. Consistent with increased GC-B activity rescuing ACH, long bones from the GC-B7E/7E/FGFR3G380R/G380R mice were not shorter than those from GC-BWT/WT/FGFR3WT/WT mice. At 2 weeks of age, male but not female FGFR3G380R/G380R mice had shorter long bones and smaller growth plate hypertrophic zones, whereas female but not male GC-B7E/7E mice had longer bones and larger hypertrophic zones. In 2-week-old males, crossing FGFR3G380R/G380R mice with GC-B7E/7E mice increased long bone length and hypertrophic zone area to levels observed in mice expressing WT versions of both receptors. We conclude that preventing GC-B dephosphorylation rescues reduced axial and appendicular skeleton growth in a mouse model of achondroplasia.Lupus nephritis (LN) is a serious complication occurring in 50% of patients with systemic lupus erythematosus (SLE) for which there is a lack of biomarkers, a lack of specific medications, and a lack of a clear understanding of its pathogenesis. The expression of calcium/calmodulin kinase IV (CaMK4) is increased in podocytes of patients with LN and lupus-prone mice, and its podocyte-targeted inhibition averts the development of nephritis in mice. Nephrin is a key podocyte molecule essential for the maintenance of the glomerular slit diaphragm. Here, we show that the presence of fucose on N-glycans of IgG induces, whereas the presence of galactose ameliorates, podocyte injury through CaMK4 expression. Mechanistically, CaMK4 phosphorylates NF-κB, upregulates the transcriptional repressor SNAIL, and limits the expression of nephrin. In addition, we demonstrate that increased expression of CaMK4 in biopsy specimens and in urine podocytes from people with LN is linked to active kidney disease. Our data shed light on the role of IgG glycosylation in the development of podocyte injury and propose the development of "liquid kidney biopsy" approaches to diagnose LN.The retinal pigment epithelium (RPE) provides vital metabolic support for retinal photoreceptor cells and is an important player in numerous retinal diseases. Tofacitinib Gene manipulation in mice using the Cre-LoxP system is an invaluable tool for studying the genetic basis of these retinal diseases. However, existing RPE-targeted Cre mouse lines have critical limitations that restrict their reliability for studies of disease pathogenesis and treatment, including mosaic Cre expression, inducer-independent activity, off-target Cre expression, and intrinsic toxicity. Here, we report the generation and characterization of a knockin mouse line in which a P2A-CreERT2 coding sequence is fused with the native RPE-specific 65 kDa protein (Rpe65) gene for cotranslational expression of CreERT2. Cre+/- mice were able to recombine a stringent Cre reporter allele with more than 99% efficiency and absolute RPE specificity upon tamoxifen induction at both postnatal days (PD) 21 and 50. Tamoxifen-independent Cre activity was negligible at PD64. Moreover, tamoxifen-treated Cre+/- mice displayed no signs of structural or functional retinal pathology up to 4 months of age. Despite weak RPE65 expression from the knockin allele, visual cycle function was normal in Cre+/- mice. These data indicate that Rpe65CreERT2 mice are well suited for studies of gene function and pathophysiology in the RPE.Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesized that Thymosin β4 (Tβ4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of platelet-derived growth factor BB (PDGF-BB) signaling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tβ4-null mice displayed aortic VSMC and elastin defects that phenocopy those of LRP1 mutants, and their compromised vascular integrity predisposed them to Angiotensin II-induced aneurysm formation. Aneurysmal vessels were characterized by enhanced VSMC phenotypic modulation and augmented PDGFR-β signaling.

Autoři článku: Dentonbengtson4586 (Browning Haley)