Demirberman7369

Z Iurium Wiki

As this particular area of Lanzarote is also one of wine production, increased pollution has the potential for negative impacts on the region's economy.A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene (ISOP) oxidation was applied to study the spatial distribution of SOA, its components and precursors in Shaanxi in July of 2013. The emissions of biogenic volatile organic compounds (BVOCs) were generated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN), of which ISOP and monoterpene (MONO) were the top two, with 1.73 × 109 mol and 1.82 × 108 mol, respectively. The spatial distribution of BVOCs emission was significantly correlated with the vegetation coverage distribution. ISOP and its intermediate semi-volatile gases were up to ∼7.0 and ∼1.4 ppb respectively in the ambient. SOA was generally 2-6 μg/m3, of which biogenic SOA (BSOA) accounted for as high as 84% on average. There were three main BVOCs Precursors including ISOP (58%) and MONO (8%) emit in the studied domain, and ISOP (9%) transported. The Guanzhong Plain had the highest BSOA concentrations of 3-5 μg/m3, and the North Shaanxi had the lowest of 2-3 μg/m3. More than half of BSOA was due to reactive surface uptake of ISOP epoxide (0.2-0.7 μg/m3, ∼19%), glyoxal (GLY) (0.2-0.5 μg/m3, ∼11%) and methylglyoxal (MGLY) (0.4-1.4 μg/m3, ∼32%), while the remaining was due to the traditional equilibrium partitioning of semi-volatile components (0.1-1.2 μg/m3, ∼25%) and oligomerization (0.2-0.4 μg/m3, ∼12%). Overall, SOA formed from ISOP contributed 1-3 μg/m3 (∼80%) to BSOA.Enrichment of cadmium (Cd) during weathering and pedogenesis of carbonate rocks has resulted in large areas of lands with soil Cd concentrations exceeding the official guidelines in China and other countries. However, it is reported in many studies that the risk of soil contamination by Cd from this natural process can be neglected as most of the Cd is not bioavailable. Noticing that the previous studies focused only on eluvial areas but not on lowland alluvium, where Cd from the eluvial areas can be transported and accumulated, we selected the Qingyang county in Anhui province, where there are two small drainage basins developed wholly on carbonate bedrock, to compare the Cd speciation and activity between eluvium and alluvium, and to evaluate the risk of Cd pollution to the latter. By the application of systematic sampling and analysis of the bedrock, soil, and rice grain samples, and in comparison with the previously acknowledged "high background with low mobility" area in Guizhou, it was found that soil developed from alluvium has both higher total Cd and higher mobile Cd proportion than soil from the upland eluvium. A very high percentage of rice grain samples (51%) grown on the alluvial soil exceeded the food standard for Cd (0.2 mg kg-1). Therefore, the spatial division of alluvium and eluvium should be the first step in the assessment of the Cd risk in carbonate regions, and special attention should be given to soil developed from alluvium.Present study carried out pot experiments and evaluated effects of single and binary mixture of nanoparticles (exposed via sludge as soil conditioner) on spinach plant. Exposure of Ag2O nanoparticles (NPs) (1 and 10 mg/kg soil-sludge) did not show significant reduction in plant as compared to control. On the other hand, TiO2 NPs (exposed as single and in binary mixture) resulted in significant increase in root length (29% and 37%) and fresh weight (60% and 48%) at highest exposure concentration. Total chlorophyll content decreased for Ag2O and binary mixture (7% and 4%, respectively) and increased for TiO2 (5%) at 10 mg/kg soil-sludge. The toxic interaction between Ag2O and TiO2 NPs was additive at both exposure concentrations. Ag2O NPs had higher tendency of root surface adsorption than TiO2 NPs. Metal content in spinach leaves at highest exposure concentration was Ag 2.6 ± 0.55 mg/g plant biomass(for Ag2O NPs) and 1.02 ± 0.32 mg/g plant biomass (for Ag2O + TiO2 NPs) and for Ti 1.12 ± 0.78 (for TiO2 NPs) mg/g plant biomass and 0.58 ± 0.41 mg/g (for Ag2O + TiO2 NPs). The inadvertent ingestion of NPs- contaminated spinach resulted in projected daily intake (DI) of Ag and Ti for different age-mass classes (child to adult) exceeding the oral reference dose for toxicity during oral ingestion. In conclusion, we report no acute toxicity of single and binary mixture of NPs to spinach but significant accumulation of Ag and Ti metals in spinach leaves. There are high chances that ingestion of spinach grown in such environment might lead to human health risks.Iron oxide nanoparticles (IONPs) are used in several medical and environmental applications, but their mechanism of action and hazardous effects to early developmental stages of fish remain unknown. https://www.selleckchem.com/products/cw069.html Thus, the present study aimed to assess the developmental toxicity of citrate-functionalized IONPs (γ-Fe2O3 NPs), in comparison with its dissolved counterpart, in zebrafish (Danio rerio) after static and semi-static exposure. Embryos were exposed to environmental concentrations of both iron forms (0.3, 0.6, 1.25, 2.5, 5 and 10 mg L-1) during 144 h, jointly with negative control group. The interaction and distribution of both Fe forms on the external chorion and larvae surface were measured, following by multiple biomarker assessment (mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological alterations and 12 morphometrics parameters). Results showed that IONPs were mainly accumulated on the zebrafish chorion, and in the digestive system and liver of the larvae. Although the IONPs induced low embryotoxicity compared to iron ions in both exposure conditions, these nanomaterials induced sublethal effects, mainly cardiotoxic effects (reduced heartbeat, blood accumulation in the heart and pericardial edema). The semi-static exposure to both iron forms induced high embryotoxicity compared to static exposure, indicating that the nanotoxicity to early developmental stages of fish depends on the exposure system. This is the first study concerning the role of the exposure condition on the developmental toxicity of IONPs on fish species.

Autoři článku: Demirberman7369 (Hartvig Als)