Deanbrandt6517

Z Iurium Wiki

Recognition plays an important role in the formation and organization of animal groups. Many animals are capable of class-level recognition, discriminating, for example, on the basis of species, kinship or familiarity. Individual recognition requires that animals recognize distinct cues, and learn to associate these with the specific individual from which they are derived. In this study, we asked whether sticklebacks (Gasterosteus aculeatus and Pungitius pungitius) were capable of learning to recognize individual conspecifics. We have used these fish as model organisms for studying selective social learning, and demonstrating a capacity for individual recognition in these species would provide an exciting opportunity for studying how biases for copying specific individuals shape the dynamics of information transmission. To test for individual recognition, we trained subjects to associate green illumination with the provision of a food reward close to one of two conspecifics, and, for comparison, one of two physical landmarks. Both species were capable of recognizing the rewarded landmark, but neither showed a preference for associating with the rewarded conspecific. Our study provides no evidence for individual recognition in either species. We speculate that the fission-fusion structure of their social groups may not favour a capacity for individual recognition.Density functional theory was employed to investigate the (111), (200), (210), (211) and (220) surfaces of CoS2. The surface energies were calculated with a sulfur environment using first-principle-based thermodynamics. It is founded that surfaces with metal atoms at their outermost layer have higher energy. The stoichiometric (220) surface terminated by two layer of sulfur atoms is most stable under the sulfur-rich condition, while the non-stoichiometric (211) surface terminated by a layer of Co atoms has the lower energy under the sulfur-poor environment. The electric structure results show that the front valence electrons of (200) surface are active, indicating that there may be some active sites on this face. There is an energy gap between the stoichiometric (220) and (211), which has low Fermi energy, indicating that their electronic structures are dynamically stable. Spin-polarized bands are calculated on the stoichiometric surfaces, and these two (200) and (210) surfaces are predicted to be noticeably spin-polarized. The Bravais-Friedel-Donnay-Harker (BFDH) method is adopted to predict crystal growth habit. The results show that the most important crystal planes for the CoS2 crystal growth are (111) and (200) planes, and the macroscopic morphology of CoS2 crystal may be spherical, cubic, octahedral, prismatic or plate-shaped, which have been verified by experiments.Derived from polycyclic aromatic hydrocarbons (PAHs), oxygenated-PAHs (oxy-PAHs) may pose hazards to aquatic organisms, which remain largely unknown. Takifugu obscurus is an important anadromous fish species of high economic and ecological values. In the present study, T. obscurus was acutely exposed to 44.29 µg l-1 9,10-phenanthrenequione (9,10-PQ) for 96 h. Changes of antioxidant indices and metabolite profiles in plasma were compared between 9,10-PQ treatment and the control. The results showed that 9,10-PQ treatment significantly increased malondialdehyde (MDA) content during 6 to 96 h, increased superoxide dismutase (SOD) and catalase (CAT) activities at 6 h, but decreased them at 96 h. These results indicated that 9,10-PQ induced oxidative stress to fish. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis revealed that four metabolic pathways were influenced in response to treatment with 9,10-PQ, including glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, purine metabolism and sulfur metabolism. These pathways are associated with antioxidant mechanisms, biosynthesis of neurotransmitters and innate immune functions. Thus, the as-obtained results confirmed that 9,10-PQ induced oxidative stress and raised concerns of neurotoxicity and immunotoxicity to fish. Overall, the present study posed a high environmental risk of oxy-PAHs to aquatic ecosystems.Glioblastoma (GBM) is the most aggressive malignant primary brain tumour with a median overall survival of 15 months. To treat GBM, patients currently undergo a surgical resection followed by exposure to radiotherapy and concurrent and adjuvant temozolomide (TMZ) chemotherapy. However, this protocol often leads to treatment failure, with drug resistance being the main reason behind this. To date, many studies highlight the role of O-6-methylguanine-DNA methyltransferase (MGMT) in conferring drug resistance. this website The mechanism through which MGMT confers resistance is not well studied-particularly in terms of computational models. With only a few reasonable biological assumptions, we were able to show that even a minimal model of MGMT expression could robustly explain TMZ-mediated drug resistance. In particular, we showed that for a wide range of parameter values constrained by novel cell growth and viability assays, a model accounting for only stochastic gene expression of MGMT coupled with cell growth, division, partitioning and death was able to exhibit phenotypic selection of GBM cells expressing MGMT in response to TMZ. Furthermore, we found this selection allowed the cells to pass their acquired phenotypic resistance onto daughter cells in a stable manner (as long as TMZ is provided). This suggests that stochastic gene expression alone is enough to explain the development of chemotherapeutic resistance.Vibrio cholerae is a cause of serious endemic diarrhoea associated with cholera in many regions in the world. A total of 256 stool and rectal swabs were collected from patients suspected to have cholera admitted to three hospitals in Hillah, Babylon Governorate, Iraq, for the period 1 September to 29 December 2017. After the routine culture of samples for isolation and identification of V. cholerae isolates, PCR was performed for molecular detection of V. cholerae isolates based on 16S ribosomal RNA gene. Toxigenicity was detected by RTX toxin genes. PCR technique emphasized molecular detection of V. cholerae for eight isolates. Only two isolates (25%) possessed both the rtxA and rtxC genes, while only three isolates (37.5%) possessed the rtxB gene. DNA sequencing was performed for the eight isolates via analysis and phylogenetic tree. The observed bacterial variants were compared to their neighbour homologous reference sequences using the National Center for Biotechnology Information (NCBI) BLAST server (Basic Local Alignment Search Tool; https//blast.

Autoři článku: Deanbrandt6517 (Holloway Barbour)