Daysingleton2558

Z Iurium Wiki

Alcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. Angiogenesis inhibitor These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.Influenza A virus may circulate simultaneously with the SARS-CoV-2 virus, leading to more serious respiratory diseases during this winter. However, the influence of these viruses on disease outcome when both influenza A and SARS-CoV-2 are present in the host remains unclear. Using a mammalian model, sequential infection was performed in ferrets and in K18-hACE2 mice, with SARS-CoV-2 infection following H1N1. We found that co-infection with H1N1 and SARS-CoV-2 extended the duration of clinical manifestation of COVID-19, and enhanced pulmonary damage, but reduced viral shedding of throat swabs and viral loads in the lungs of ferrets. Moreover, mortality was increased in sequentially infected mice compared with single-infection mice. Compared with single-vaccine inoculation, co-inoculation of PiCoVacc (a SARS-CoV-2 vaccine) and the flu vaccine showed no significant differences in neutralizing antibody titers or virus-specific immune responses. Combined immunization effectively protected K18-hACE2 mice against both H1N1 and SARS-CoV-2 infection. Our findings indicated the development of systematic models of co-infection of H1N1 and SARS-CoV-2, which together notably enhanced pneumonia in ferrets and mice, as well as demonstrated that simultaneous vaccination against H1N1 and SARS-CoV-2 may be an effective prevention strategy for the coming winter.A growing body of evidence suggests that a high level of self-control may, despite its positive effects, influence cognitive processing in an unfavorable manner. However, the affective costs of self-control have only rarely been investigated. Anorexia nervosa (AN) is an eating disorder that is often characterized by excessive self-control. Here, we used fMRI to explore whether over-control in AN may have negative affective consequences. 36 predominantly adolescent female AN patients and 36 age-matched healthy controls (HC) viewed negative and neutral pictures during two separate fMRI sessions before and after 10 min of rest. We tested whether abnormally elevated neural activity during the initial presentation in a brain region broadly implicated in top-down control, the dorsolateral prefrontal cortex (dlPFC), could predict subsequent activation in limbic areas relevant to bottom-up affective processing. Using ecological momentary assessment (EMA), we also tested for associations between the aforementioned neuroimaging markers and negative affective states in the two weeks following the experiment. fMRI data revealed that higher initial activation of the dlPFC in AN predicted increased amygdala reactivity during the second fMRI session, which in turn was related to increased self-reported tension during two weeks following the scan. These data suggest that over-control in AN patients may come at a cost including negative affective states on a short (minutes) as well as a longer time scale (days). This mechanism may significantly contribute to the persistence of AN.Stress negatively affects cognitive performance. Probiotics remediate somatic and behavioral stress responses, hypothetically by acting on the gut microbiota. Here, in exploratory analyses, we assessed gut microbial alterations after 28-days supplementation of multi-strain probiotics (EcologicBarrier consisting of Lactobacilli, Lactococci, and Bifidobacteria in healthy, female subjects (probiotics group n = 27, placebo group n = 29). In an identical pre-session and post-session, subjects performed a working memory task before and after an acute stress intervention. Global gut microbial beta diversity changed over time, but we were not able to detect differences between intervention groups. At the taxonomic level, Time by Intervention interactions were not significant after multiple comparison correction; the relative abundance of eight genera in the probiotics group was higher (uncorrected) relative to the placebo group Butyricimonas, Parabacteroides, Alistipes, Christensenellaceae_R-7_group, Family_XIII_AD3011_group, Ruminococcaceae_UCG-003, Ruminococcaceae_UCG-005, and Ruminococcaceae_UCG-010.

Autoři článku: Daysingleton2558 (Skovsgaard Sparks)