Davieshickman5994

Z Iurium Wiki

Interestingly, transport of clay colloids increased with the increasing pH from 5.0 to 9.0; however, CIP transport decreased with the increasing pH in the presence of clay colloids. The observations were likely attributable to pH-dependent ciprofloxacin adsorption/desorption to clay minerals. Increasing the concentrations of NaCl and CaCl2 generally decreased the contaminant-mobilizing ability of montmorillonite colloids, mainly by increasing the aggregation of colloids and thus, decreasing the transport of colloid-adsorbed CIP. Moreover, under the test conditions (1 mM NaCl and pH 7.0), the presence of CIP inhibited the transport of clay colloids due to the increase in aggregate size of clay colloids with the addition of CIP. Overall, these findings suggest that clay colloids with high adsorption abilities for antibiotics in the subsurface environment may act as a carrier for certain antibiotic compounds.Tonalide or acetyl hexamethyl tetralin (AHTN) is used as a fragrance additive in various household products. Recently, AHTN has drawn attention owing to its negative health effects on aquatic organisms. Data on AHTN toxicity toward aquatic species are limited. Therefore, this study tested the oxidative stress induced by AHTN exposure on the Rhodeinae sinensis Gunther and Macrobrachium nipponense. In this study, malonaldehyde (MDA) content and the activities of acetyl cholinesterase (AchE), superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase (CAT) in R. sinensis Gunther were tested after 30 days of exposure to 30.093, 34.005, 38.426, 43.421, 49.067, 55.444, 62.652, 70.800, and 80.000 μg/L AHTN, respectively. The MDA, AchE, SOD, GST and CAT in M. nipponense were tested after 40 days of exposure to 60.000, 72.000, 86.400, 103.680, 124.416, 149.299, 179.159, 214.991, and 257.989 μg/L AHTN, respectively. In addition, an integrated biomarker response (IBR) index was utilised to evaluate the intly lower than the PNEC of 2.636 μg/L for traditional endpoint survival. Therefore, the protection of aquatic organisms based on non-traditional toxicity endpoints should be considered in ecological risk assessment.Both antibiotics and surfactants commonly exist in natural environment and have generated great concerns due to their biological influence on the ecosystem. A major concern lies in the capacity of antibiotics to induce bacterial filaments formation, which has potential health risks. However, their joint effect is not clear so far. Here, we studied the joint effect of cephalexin (Cex), a typical antibiotic, and differently charged surfactants on the formation of E. coli filaments. Three kinds of surfactants characterized by different charges were used cationic surfactant (CTAB), anionic surfactant (SDS) and nonionic surfactant (Tween). Data showed that Cex alone caused the formation of E. coli filaments, elongating their maximum profile from ca. 2 μm (a single E. coli cell) to tens of micrometers (an E. coli filament). A joint use of surfactants with Cex could produce even longer E. coli filaments, elongating the maximum length of the bacteria to larger than 100 μm. The capacity order of different surfactants under their optimum concentrations to produce elongated E. coli filaments was Tween > SDS > CTAB. The E. coli filaments were characterized with a normal DNA distribution and a good cell membrane integrity. We measured the stiffness of bacterial cell wall by atomic force microscopy and correlated the elongation capacity of the E. coli filaments to the stiffness of cell wall. Zeta potential measurement indicated that inserting into or being bound to the cell surface in a large quantity was tested not to be the major way that surfactants interacted with bacteria.Dibutyl phthalate (DBP) is one of the most ubiquitous phthalate esters found in everyday products, and is receiving increased attention as an immunologic adjuvant. However, information regarding DBP-aggravated allergic asthma is still limited. This study used a mouse model sensitized with ovalbumin (OVA) to determine any adverse effects of DBP on allergic asthma. Our results reveal that allergic asthmatic mice exposed to DBP for an extended period had a significant increase in inflammatory cell infiltration; a significant increase in levels of serum immunoglobulin and T helper 2 cell (Th2) and T helper 17 cell (Th17) cytokines in lung tissue; and significant changes in lung histology and AHR, all of which are typical asthmatic symptoms. The levels of oxidative stress and levels of the neuropeptide, calcitonin gene related peptide (CGRP), were also elevated after DBP exposure. Interestingly, blocking oxidative stress by administering melatonin (MT) not only reduced oxidative stress and CGRP levels, but also ameliorated the asthmatic symptoms. https://www.selleckchem.com/products/myf-01-37.html Collectively, these results show that DBP exacerbates asthma-like pathologies by increasing the expression of CGRP mediated by oxidative stress.Sulfonamides (SAs) are antibiotics widely used in clinical practice, livestock and poultry production, and the aquaculture industry. The compounds enter the soil environment largely through livestock and poultry manure application to farmland. SAs not only affect plant growth, but also pose a potential threat to human health through SA residues in plant tissues. In particular, sulfamethoxazole (SMZ) has been classified as a Category 3 carcinogen by the World Health Organization, and thus its soil ecological toxicity and possible health risks are of concern. Using A. thaliana as a model plant, stress responses and biological residues of sulfadiazine (SD), sulfametoxydiazine (SMD), and SMZ were investigated in the present study. Root length and aboveground plant biomass were significantly inhibited by the three types of SA, whereas lateral roots exposed to SMD grew vigorously. The contents of chlorophyll a and chlorophyll b and photosystem II maximum photochemical quantum yield declined with increase in drug concentration, which indicated that exposure to SAs affected photosynthesis and inhibited chlorophyll synthesis in A. thaliana. With increase in drug concentration, reactive oxygen species (ROS) accumulation in the leaves increased significantly. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were activated at low SA concentrations, but increased lipid peroxidation occurred with increase in SA concentration. Of the three compounds, SMZ was the most toxic to A. thaliana, followed by SD, and SMD was the least toxic. The results indicated that the risk of SMD entering an organism through the food chain is greater than that for SMZ and SD.Previous studies focused on biocompatibility of graphene oxide (GO) to macrophages, but the impact of GO on lipid profiles in macrophages was less investigated. Herein, we investigated the interactions between THP-1 macrophages and GO of different sizes (GO of size 500-5000 nm, denoted as GO-L; GO of size less then 500 nm, denoted as GO-S). We found that after 24 h exposure, the internalization of GO appeared to be minimal, whereas up to 50 μg/mL of GO-L but not GO-S reduced lipid accumulation, accompanying with a significantly reduced release of soluble monocyte chemoattractant protein-1 (MCP-1) but not interleukin-6 (IL-6). Moreover, lipidomic data showed that GO-L decreased the levels of 17 lipid classes, whereas GO-S only decreased the levels of 5 lipid classes. For comparison, 50 μg/mL carbon black (CB) significantly increased lipid accumulation with considerable particle internalization. GO-reduced lipid accumulation was not related with increase of reactive oxygen species (ROS) or induction of autophagy, and modulation of autophagy by chemicals showed no significant effect to alter the effects of GO-L on lipid accumulation. However, exposure to GO reduced the mRNA and protein levels of key components in peroxisome proliferators-activated receptor (PPAR) signaling pathway, a pathway that is related with lipid droplet biogenesis, and the modulation of PPARγ by chemicals altered the effects of GO-L on lipid accumulation. In conclusion, our results suggested that GO size-dependently altered lipid profiles in THP-1 macrophages that might be related with PPAR signaling pathway.To increase the degree of immobilization of heavy metals subjected to sludge pyrolysis, we investigated the effects of pretreating sludge with Ochrobactrum supplementation on the immobilization of chromium (Cr) and copper (Cu) during sludge pyrolysis. The sequential extraction procedure was used to test the metallic forms of Cr and Cu. The immobilization of Cr and Cu was characterized with X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, etc. Results show that 1) the addition of Ochrobactrum (1-8%) can accelerate the mineralization process in blank sludge and can accelerate the conversion of the oxidizable forms of Cr and Cu into the residual forms subjected to pyrolysis; 2) pretreatment with Ochrobactrum supplementation can inhibit the volatilization of Cr and Cu during sludge pyrolysis, particularly in the case of a high concentration of Cu. Notably, the pretreatment with Ochrobactrum can reduce 20.38-85.09% of the potential ecological risk of Cr and Cu. The pretreatment with Ochrobactrum contributes to the immobilization of Cr and Cu subjected to sludge pyrolysis and thus can prevent pollution of the environment. The results of this study can be used for harmless disposal of municipal sludge.The Poplar Ecological Retreat (PER) project is a significant environmental protection initiative implemented to protect the Dongting Lake wetlands ecosystem in China, and the ecological impacts of this project have gradually become a hot topic. In this study, water conservation was selected as an indicator of ecosystem function to explore the impact of the project by using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and geographic statistical methods. Water yield and land-use changes were quantitatively evaluated, and significant changes in the wetland landscape configuration occurred after the PER project because forest beach, moss marshland and mudflat areas were transformed into a poplar-retreat area. Thus, the proportion of the poplar-retreat area and average water yield increased. By using the principal component and cluster analysis methods, climate change and landscape patterns were shown to be the dominant driving factors affecting water conservation under stable meteorological conditions. Moreover, the landscape heterogeneity that resulted from the landscape patterns had a greater impact than climate change, which means that reducing human activities can enhance water conservation. Additionally, the correlation between landscape heterogeneity and water yield indicated that reducing landscape fragmentation and improving aggregation also benefit water conservation. Therefore, the PER project is successful at enhancing ecological functions and protecting wetland environments, and it represents a good example of maintaining ecological sustainability despite local economic performance restrictions. This project serves as an important reference for the establishment of sustainable wetland ecological policies by national governments, and the results can provide theoretical support for landscape ecology and eco-hydrology research.

Autoři článku: Davieshickman5994 (Hanson Damsgaard)