Davidsendonnelly1367
t transformation, TGFβ1-induced SMAD3 phosphorylation, and the production of fibrogenic proteins (Fibronectin-1, α-SMA). However, NTB promoted immunosuppressive phenotype in Tregs, and altered vital signaling pathways in isolated cardiac fibroblast and cardiomyocytes, suggesting that its biological effect and underlying cardiac protection mechanisms are not limited to fibroblast and fibrosis alone. Our findings provide a proof of concept for repurposing NTB to combat adverse myocardial fibrosis and encourage the need for further validation in large animal models and subsequent clinical development for HF patients.Phthalates (PAEs) are considered endocrine-disrupting chemicals (EDCs), a series of compounds able to disrupt the normal regulation of the human endocrine-system. In the present study, we investigated the roles of four PAEs, butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP), in hepatocellular carcinoma (HCC) cells. We define novel roles for the PAEs on the migration of HCC cells via their enhancing of the interaction between the pregnane X receptor (PXR) and E26 transformation specific sequence 1 (ETS-1). Our results indicate that PAEs induced the transcriptional activation of ETS-1 and PXR. PXR activated by PAEs could bind to ETS-1 directly and enhanced the activity of ETS-1, which resulted in the induction of invasion-related ETS-1 target genes. The "LXXLL" motif in the ETS-1C-terminal was essential for the interaction between PXR and ETS-1 induced by PAEs. Treatment of PAEs promoted the nuclear accumulation of ETS-1 or the recruitment of ETS-1, but not in cells expressing ETS-1 with a mutated LXXLL motif in its downstream gene promoter region, or following transfection of PXR siRNA. Treatment with the PXR antagonist ketoconazole almost completely inhibited the effects of PAEs. Moreover, PAEs enhanced the in vitro or in vivo invasion of HCC cells via PXR/ETS-1. Therefore, our results not only contribute to a better understanding of HCC, but also extended the roles of EDCs regulating human malignancies.Ralstonia solanacearum is a soil-borne pathogen that causes bacterial wilt in plants. Rapamycin concentration The wild-type strain of R. solanacearum undergoes spontaneous phenotype conversion (PC), from a fluidal to non-fluidal colony morphology. PC mutants are non-pathogenic due to reduced virulence factors, and can control wilt diseases as biological control agents. The induction factors of PC in R. solanacearum are currently unclear. Here, we investigated the effect of iron treatment on bacterial growth of wild-type strain and PC mutant, and PC of the wild-type strain in liquid medium. Interestingly, PC was frequently induced in the single cultured wild-type strain by iron treatment; however, PC was not induced in the co-culture. In a co-culture of both strains, the PC mutant showed increased growth compared to the wild-type strain by iron treatment. Furthermore, we investigated the effects of iron treatment on the bacterial growth and PC of the wild-type strain under different culture conditions of medium type (MM broth, BG bronacearum.Clostridium perfringens beta2 (CPB2) toxin can cause intestinal damage and inflammatory responses in a variety of animals, which seriously endanger the healthy development of animal husbandry. Increasing evidence has demonstrated that microRNAs (miRNAs) can play an important regulatory role in the process of pathogenic infection. In our previous study, we found that miR-204 was highly expressed in the ileum tissues of the susceptible group diarrhea piglets after infection with Clostridium perfringens (C. perfringens) type C. In this study, we found that miR-204 was also up-regulated in different time points after CPB2 toxin treatment. Overexpression of miR-204 promoted apoptosis and inflammatory response of intestinal porcine epithelial cells (IPEC-J2), whereas the opposite results were displayed after transfected with miR-204 inhibitor. Furthermore, the luciferase reporter assays confirmed that BCL2L2 was a direct target gene of miR-204. Interestingly, we found that overexpression BCL2L2 attenuated the apoptosis and inflammatory response of CPB2 toxin induced IPEC-J2 cells. In conclusion, these results find that miR-204 promotes the apoptosis and intensify inflammatory response of CPB2 toxin induced IPEC-J2 cells via targeting BCL2L2. These data provide a valuable reference for the piglets resistance diarrhea at the molecular level.Aquatic Pathogens are expected to encounter tremendous levels of variation in their environment - both abiotic and biotic. Here we examined the change in innate immune parameters and mortality pattern of Carassius auratus during the interaction of co-infection due to an ectoparasite, Argulus and bacteria Aeromonas hydrophila, along with a temperature gradient. Experimental fish were assigned randomly to six treatment groups (T1-T6). Fish of groups T1, T3 and T5 are assigned for healthy fishes kept at 23, 28 and 33°c temperature and served as control. T2, T4 and T6 groups are the co-infected groups kept at temperature gradient. For the haematological and enzyme parameter analysis, sampling was done at 24 h, 72 h and 168 h post challenge from 4 fish in all experimental groups. A temperature dependent increase in intensity of Argulus was observed in the experimental group. Both in control group and co-infected group a temperature dependent mortality pattern was observed, showing an increased mortality of 60% in ealth status of the fish by hampering the immunological and physiological parameters towards more detrimental side.In parkinsonian conditions, network dynamics in the cortical and basal ganglia circuits present abnormal oscillations and periods of high synchrony, affecting the functionality of multiple striatal regions including the sensorimotor striatum. However, it is still unclear how these altered dynamics impact on sensory processing, a key feature for motor control that is severely impaired in parkinsonian patients. A major confound is that pathological dynamics in sensorimotor networks may elicit unspecific motor responses that may alter sensory representations through sensory feedback, making it difficult to disentangle motor and sensory components. To address this issue, we studied sensory processing using an anesthetized model with robust sensory representations throughout cortical and basal ganglia sensory regions and limited motor confounds in control and hemiparkinsonian rats. A general screening of sensory-evoked activity in large populations of neurons recorded in the primary sensory cortex (S1), dorsolateral striatum (DLS) and substantia nigra pars reticulata (SNr) revealed increased excitability and altered sensory representations in the three regions. Further analysis revealed uncoordinated population dynamics between DLS and S1/SNr. Finally, DLS lesions in hemiparkinsonian animals partially recovered population dynamics and execution in the rotarod.The N-methyl-d-aspartate receptor (NMDAR) is a glutamate-gated receptor channel that plays a role in peripheral neuropathic pain. Src, a protein tyrosine kinase, can regulate the activation of NMDARs in chronic pain conditions. Pannexin 1 (Panx1), a plasma membrane channel, plays an important role in neuropathic pain and functionally interacts with NMDARs in the pathological condition of epilepsy. In this study, the roles of NMDAR1 (NR1), Src, and Panx1 and their interactions in the trigeminal ganglion (TG) in orofacial ectopic pain attributed to inferior alveolar nerve transection (IANX) were investigated. IANX induced mechanical allodynia in the whisker pad with increased expression levels of NR1, Src phosphorylation (p-Src), and Panx1 in the TG. Double immunostaining revealed that NR1, Src, and Panx1 all colocalized with glutamine synthetase (GS) and neuronal nuclei (NeuN), and they overlapped in the TG, suggesting that they might be structurally connected to one another. In addition, trigeminal injection of memantine, PP2, or 10Panx attenuated IANX-induced mechanical allodynia in the whisker pad. Continuous intraganglionic administration of memantine (an antagonist of NMDAR) decreased IANX-induced upregulated expression of p-Src and Panx1. Similarly, PP2 (an inhibitor of Src) also decreased Panx1 protein expression but had no effect on NR1. In addition, intraganglionic injection of 10Panx (a blocker of Panx1) decreased NR1 protein expression but did not affect Src. In general, our findings demonstrated that NR1, Src, and Panx1 all contributed to orofacial ectopic pain following IANX and that they composed a signalling pathway in the TG involved in mechanical allodynia.Rheumatoid arthritis (RA) is characterized by the outbreak of inflammation. Neutrophils, the main culprit of the outbreak of inflammation, are the first inflammatory cells to be recruited to inflamed joints and facilitate the recruitment of themselves by stimulating the release of chemokines. Here, based on neutrophils, a novel anti-inflammatory "shield and sword soldiers" strategy is established with LMWH-TOS nanoparticles (LT NPs). The hydrophilic fragment low molecular weight heparin (LMWH) acts as a shield which block the transvascular movement of neutrophils through inhibiting the adhesion cascade by binding to P-selectin on inflamed endothelium. Synergistically, MMP-9, which is secreted by the recruited neutrophils and degrade the main component of articular cartilage, is reduced by the hydrophobic fragment d-α-tocopheryl succinate (TOS), functioning as a sword. In collagen-induced arthritis (CIA) mouse model, LT NPs show significant targeting effect, and exhibit prominent therapeutic efficacy after enveloping the first-line anti-RA drug methotrexate. Our work proves that the multi-stage manipulation of neutrophils is feasible and effective, providing a new concept for RA treatment.
Oxaliplatin (OXE) combined with other chemotherapy drugs against colorectal cancer had been reported in the literature before, however, the efficacy of oxaliplatin combined with natural compounds was elusive. In addition, the clinical bioactivity and therapeutic dose of antitumor drugs are severely limited due to poor targeting and side effects. NDDSs offers an excellent strategy to overcome the disadvantages of small molecule anticancer drugs.
Here, we have prepared N,O-carboxymethyl chitosan Oxaliplatin nanoparticles (CMCS-OXE NPs) and N,O-carboxymethyl chitosan Resveratrol nanoparticles (CMCS-Res NPs) were prepared by ion crosslinking and emulsification crosslinking, respectively.
The results revealed that the CMCS-OXE NPs exhibited a high encapsulation efficiency (60%) with a size of approximately 190.0nm, and the CMCS-Res NPs exhibited a high encapsulation efficiency (65%) with a size of approximately 164.2nm. The treatment with both types of nanoparticles combined exhibited more significant anti-colon cancer activity than the free drugs or either type of nanoparticle alone. In the in vivo experiments, the inhibition efficiency of the combined nanoparticle treatment was much stronger than the free drugs or either type of nanoparticle alone.
Overall, combination of oxaliplatin and resveratrol into a nanoparticle-drug delivery systems (NDDSs) appears to be a promising strategy for colorectal cancer (CRC) therapy.
Overall, combination of oxaliplatin and resveratrol into a nanoparticle-drug delivery systems (NDDSs) appears to be a promising strategy for colorectal cancer (CRC) therapy.