Davenportellegaard6560
Anosmia, a neuropathogenic condition of loss of smell, has been recognized as a key pathogenic hallmark of the current pandemic SARS-CoV-2 infection responsible for COVID-19. While the anosmia resulting from olfactory bulb (OB) pathology is the prominent clinical characteristic of Parkinson's disease (PD), SARS-CoV-2 infection has been predicted as a potential risk factor for developing Parkinsonism-related symptoms in a significant portion of COVID-19 patients and survivors. 17-AAG SARS-CoV-2 infection appears to alter the dopamine system and induce the loss of dopaminergic neurons that have been known to be the cause of PD. However, the underlying biological basis of anosmia and the potential link between COVID-19 and PD remains obscure. Ample experimental studies in rodents suggest that the occurrence of neural stem cell (NSC) mediated neurogenesis in the olfactory epithelium (OE) and OB is important for olfaction. Though the occurrence of neurogenesis in the human forebrain has been a subject of debate, considerable experimental evidence strongly supports the incidence of neurogenesis in the human OB in adulthood. To note, various viral infections and neuropathogenic conditions including PD with olfactory dysfunctions have been characterized by impaired neurogenesis in OB and OE. Therefore, this article describes and examines the recent reports on SARS-CoV-2 mediated OB dysfunctions and defects in the dopaminergic system responsible for PD. Further, the article emphasizes that COVID-19 and PD associated anosmia could result from the regenerative failure in the replenishment of the dopaminergic neurons in OB and olfactory sensory neurons in OE.Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with a poor prognosis and limited treatment options. Oxidative and nitrosative stress is implicated as one of the main pathogenic pathways in IPF. The rationale for the use of antioxidants to treat lung fibrosis is appealing, however to date a consistent beneficial effect for such an approach has not been observed. We have recently demonstrated that nitroxides, particularly 3-carbamoyl-proxyl (3-CP), markedly reduce airway inflammation, airway hyper-responsiveness, and protein nitration of the lung tissue in a mouse model of ovalbumin-induced acute asthma, thus prompting its use for the treatment of IPF. The present study investigates the effect of 3-CP on the development of lung fibrosis using the murine intratracheal bleomycin model. 3-CP was administered either intranasally or orally during the entire experiment or starting 7 days after induction of the lung injury. 3-CP was found to be both a preventive and a therapeutic drug reducing the lung fibrosis (histological score), the increase in collagen content, protein nitration, TGF-β levels, the degree of weight loss as well as inhibiting the impairment of lung function. Nitroxides are catalytic antioxidants that preferentially detoxify radicals, and therefore the effect of 3-CP on the severity of the disease supports the involvement of reactive oxygen and nitrogen species in the disease pathology.Oxidative stress-induced neuron apoptosis plays a crucial role in the early brain injury (EBI) after subarachnoid hemorrhage (SAH). Kisspeptin has been reported as antioxidant to reduce oxidative stress-induced neuronal cell death through G protein-coupled receptor 54 (GPR54). The goal of this study was to determine the neuroprotection of the Kisspeptin/GRP54 signaling pathway against EBI after SAH. Two hundred and ninety-two Sprague Dawley male rats were used and SAH was induced by the endovascular perforation. Exogenous Kisspeptin 54 (KP54) was delivered intranasally. Small interfering ribonucleic acid (siRNA) for endogenous KISS1, a selective GPR54 antagonist kisspeptin 234, or β-arrestin 2 siRNA for ARRB2 (a functional adaptor of GPR54) were administered intracerebroventricularly. Post-SAH evaluations included neurobehavioral tests, SAH grade, Western blot, immunofluorescence, Fluoro-Jade C, TUNEL, and Nissl staining. The results showed that endogenous KISS1 knockdown aggravated but exogenous KP54 (1.0 nmol/kg) treatment attenuated neurological deficits, brain oxidative stress, and neuronal apoptosis at 24 h after SAH. The benefits of KP54 persisted to 28 days after SAH, which significantly improved cognitive function in SAH rats. The GPR54 blockade or the ARRB2 knockout offset the neuroprotective effects of KP54 in SAH rats. In conclusion, our results suggested that administration of KP54 attenuated oxidative stress, neuronal apoptosis and neurobehavioral impairments through GPR54/ARRB2/AKT/GSK3β signaling pathway after SAH in rat. Thus, KP54 may provide an effective treatment strategy for SAH patients.A major cause of morbidity and mortality in multiple myeloma is kidney injury from overproduction of monoclonal immunoglobulin light chains (FLC). FLC can induce damage through the production of hydrogen peroxide, which activates pro-inflammatory and pro-apoptotic pathways. The present study focused on catalase, a highly conserved antioxidant enzyme that degrades hydrogen peroxide. Initial findings were that FLC increased hydrogen peroxide levels but also decreased catalase levels and activity in proximal tubule epithelium. In order to clarify, we showed that the phosphatidylinositol 3-kinase inhibitor, LY294002, inhibited FLC-induced Akt-mediated deactivation of Forkhead box O class 3a (FoxO3a) and increased catalase activity in proximal tubule cells. Augmented catalase activity decreased FLC-mediated production of hydrogen peroxide as well as the associated increase in High Mobility Group Box 1 (HMGB1) protein release and caspase-3 activity. Coincubation of cells with FLC and an allosteric activator of Sirtuin 1 (SIRT1) was also sufficient to increase catalase activity and promote similar cytoprotective effects. Our studies confirmed that the mechanism of downregulation of catalase by FLC involved deactivation of FoxO3a and inhibition of SIRT1. Mechanistic understanding of catalase regulation allows for future treatments that target pathways that increase catalase in the setting of proximal tubule injury from FLC.