Daugaardharper2151
The principle of breathable food packaging is to provide the optimal number of pores to transfer a sufficient amount of fresh air into the packaging headspace. In this work, antimicrobial microporous eco-friendly polymeric membranes were developed for food packaging. Polylactic acid (PLA) and polycaprolactone (PCL) were chosen as the main packaging polymers for their biodegradability. To develop the microporous films, sodium chloride (NaCl) and polyethylene oxide (PEO) were used as porogenic agents and the membranes were prepared using solvent-casting techniques. The results showed that films with of 50% NaCl and 10% PEO by mass achieved the highest air permeability and oxygen transmission rate (O2TR) with PLA. Meanwhile, blends of 20% PLA and 80% PCL by mass showed the highest air permeability and O2TR at 100% NaCl composition. The microporous membranes were also coated with cinnamaldehyde, a natural antimicrobial ingredient, to avoid the transportation of pathogens through the membranes into the packaged foods. In vitro analysis showed that the biodegradable membranes were not only environmentally friendly but also allowed for maximum food protection through the transportation of sterile fresh air, making them ideal for food packaging applications.Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the biobased polymer backbone has also been investigated for the first time and its properties compared to a standard chain extender, 1,3-propanediol (PDO). The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The thermal properties have been evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical properties have been studied by tensile stress-strain analysis. Moreover, the particle size, particle size distribution (PSD), and stability of developed waterborne dispersions have been assessed by dynamic light scattering (DLS), Z-potential, stoe highly demanded in protective workwear and technical textiles.New results are presented for laser formation-in particular, the "drawing" of microstructures in polymer films using continuous-wave (CW) laser radiation λ = 405 nm with an intensity of 0.8-3.7 kW/cm2. The laser drawing was carried out in the polymer system poly-2,2'-p-oxydiphenylene-5,5'-bis-benzimidazole (OPBI), which consists of two phases a solid polymer matrix with formic acid (HCOOH) dissolved in it. The formation of microstructures, including the stage of foaming, was carried out in three media air, water and a supercritical carbon dioxide medium containing dissolved molecules of the silver precursor Ag(hfac)COD. Aurora A Inhibitor I supplier The morphological features of foam-like track structures formed in the near-surface layer of the polymer films by laser "drawing" are considered. A model of processes is presented that explains the appearance of periodic structures. The key point of this model is that it considers the participation of the photoinduced mechanism of explosive boiling of formic acid molecules dissolved in the polymer matrix. Using Raman spectroscopy, spectra were obtained and interpreted, which relate to different stages in the formation of microstructures in OPBI films. The effects associated with the peculiarities of luminescent microstructures on the surfaces of glasses in close contact with polymer films during laser "painting" in the air have been studied.Rubber composed of highly unsaturated hydrocarbons, modified through addition of chemicals and vulcanization are widely used to date. However, the usage of rubber, faces many obstacles. These elastomeric materials are difficult to be re-used and recovered, leading to high post-consumer waste and vast environmental problems. Tyres, the major rubber waste source can take up to 80 years to naturally degrade. Experiments show that the latex clearing proteins (Lcp) found in Actinobacteria were reportedly critical for the initial oxidative cleavage of poly(cis-1,4-isoprene), the major polymeric unit of rubber. Although, more than 100 rubber degrading strains have been reported, only 8 Lcp proteins isolated from Nocardia (3), Gordonia (2), Streptomyces (1), Rhodococcus (1), and Solimonas (1) have been purified and biochemically characterized. Previous studies on rubber degrading strains and Lcp enzymes, implied that they are distinct. Following this, we aim to discover additional rubber degrading strains by randomlyfirms the strains' ability to utilize different rubber materials (fresh latex, NR product and vulcanized rubber) as the sole carbon source. Both strains exhibited different levels of biodegradation ability. Findings on tyre utilization capability by Dactylosporangium sp. AC04546 is of interest. The final aim is to find sustainable rubber treatment methods to treat rubber wastes.Polymer electrolyte membrane fuel cell (PEMFC) is an eco-friendly energy conversion device that can convert chemical energy into electrical energy without emission of harmful oxidants such as nitrogen oxides (NOx) and/or sulfur oxides (SOx) during operation. Nafion®, a representative perfluorinated sulfonic acid (PFSA) ionomer-based membrane, is generally incorporated in fuel cell systems as a polymer electrolyte membrane (PEM). Since the PFSA ionomers are composed of flexible hydrophobic main backbones and hydrophilic side chains with proton-conducting groups, the resulting membranes are found to have high proton conductivity due to the distinct phase-separated structure between hydrophilic and hydrophobic domains. However, PFSA ionomer-based membranes have some drawbacks, including high cost, low glass transition temperatures and emission of environmental pollutants (e.g., HF) during degradation. Hydrocarbon-based PEMs composed of aromatic backbones with proton-conducting hydrophilic groups have been actively studied as substitutes. However, the main problem with the hydrocarbon-based PEMs is the relatively low proton-conducting behavior compared to the PFSA ionomer-based membranes due to the difficulties associated with the formation of well-defined phase-separated structures between the hydrophilic and hydrophobic domains. This study focused on the structural engineering of sulfonated hydrocarbon polymers to develop hydrocarbon-based PEMs that exhibit outstanding proton conductivity for practical fuel cell applications.The 1H DQ Fourier and Laplace-like spectra for a series of cross-linked natural rubber (NR) samples naturally aged during six years are presented and characterized. The DQ build-up curves of these samples present two peaks which cannot be described by classical functions. The DQ Fourier spectra can be obtained after a numeric procedure which introduces a correction time which depends less on the chosen approximation, spin-½ and isolated CH2 and CH3 functional groups. The DQ Fourier spectra are well described by the distributions of the residual dipolar coupling correlated with the distribution of the end-to-end vector of the polymer network, and with the second and fourth van Vleck moments. The deconvolution of DQ Fourier spectra with a sum of four Gaussian variates show that the center and the width of Gaussian functions increase linearly with the increase in the cross-link density. The Laplace-like spectra for the natural aged NR DQ build-up curves are presented. The centers of four Gaussian distributions obtained via both methods are consistent. The differences between the Fourier and Laplace-like spectra consist mainly of the spectral resolution in the favor of Laplace-like spectra. The last one was used to discuss the effect of natural aging for cross-linked NR.Versatile substituted electron-deficient trichloromethylarenes can easily be synthesized and combined with a Safranine O/triarylalkylborate salt to form a highly efficient three-component photo-initiation system that starts free radical polymerization to finally form holographic gratings with a single-pulsed laser. The mechanism of this photo-initiation most likely relies on an electron transfer from the borate salt into the semi-occupied HOMO of the excited dye molecule Safranine O, which after fragmentation generates an initiating alkyl radical and longer-lived dye radical species. This dye radical is most probably oxidized by the newly introduced trichloromethylarene derivative as an electron acceptor. The two generated radicals from one absorbed photon initiate the photopolymerization and form index gratings in a suitable holographic recording material. This process is purely photonic and does not require further non-photonic post treatments.Core-shell acrylic copolymer latexes containing bio resourced itaconic acid with different compositions in respect with the core and shell segments were synthesized, characterized, and applied as coating materials for leather. The purpose of the study was to evidence the high coating performance of the latexes when the ratio of the core/shell differed from 90/10 to 50/50 wt %. The copolymers were prepared via emulsion copolymerization technique and the products were isolated and characterized by means of structure identity, thermal behavior (DSC and DMTA), coating performance. The particle size of the latexes varied from 83 to 173 nm with the variation of the ratio of core/shell segments. The influence of the composition of soft part and hard part was highlighted in the thermal and coating properties. The optimal composition giving the best coating performance could be determined as DS 60/40. Further increase of the hard segment content, resulted in decreased emulsion stability and the coating performance on the leathers. The use of itaconic acid seemed to increase the emulsion stability as well the adhesion of the latexes to the substrate.A fluorescent probe for specific biorecognition was prepared by a facile method in which amphiphilic random copolymers were encapsulated with hydrophobic upconversion nanoparticles (UCNPs). This method quickly converted the hydrophobic UCNPs to hydrophilic UNCPs. Moreover, the self-folding ability of the amphiphilic copolymers allowed the formation of molecular imprinting polymers with template-shaped cavities. LiYF4Yb3+/Tm3+@LiYF4Yb3+ UCNP with up-conversion emission in the visible light region was prepared; this step was followed by the synthesis of an amphiphilic random copolymer, poly(methacrylate acid-co-octadecene) (poly(MAA-co-OD)). Combining the UCNPs and poly(MAA-co-OD) with the templates afforded a micelle-like structure. After removing the templates, UCNPs encapsulated with the molecularly imprinted polymer (MIP) (UCNPs@MIP) were obtained. The adsorption capacities of UCNPs@MIP bound with albumin and hemoglobin, respectively, were compared. The results showed that albumin was more easily bound to UCNPs@MIP than to hemoglobin because of the effect of protein conformation. The feasibility of using UCNPs@MIP as a fluorescent probe was also studied. The results showed that the fluorescence was quenched when hemoglobin was adsorbed on UCNPs@MIP; however, this was not observed for albumin. This fluorescence quenching is attributed to Förster resonance energy transfer (FRET) and overlap of the absorption spectrum of hemoglobin with the fluorescence spectrum of UCNPs@MIP. To our knowledge, the encapsulation approach for fabricating the UCNPs@MIP nanocomposite, which was further used as a fluorescent probe, might be the first report on specific biorecognition.