Danielsmollerup4788

Z Iurium Wiki

Comparative studies of a crystal of the hTDO-CO-Trp complex show that CO and Trp remain bound in the active site under comparable X-ray illumination, indicating a much more rigid protein architecture. The data offer important new insights into the structure and function relationships of the heme-based dioxygenases and provide new guidelines for structure-based design of inhibitors targeting them.Double perovskite oxides with d8-d3 electronic configurations are expected to be ferromagnetic from the Goodenough-Kanamori rules, such as ferromagnetic La2NiMnO6. In search of new ferromagnetic insulators, double perovskite Ba2NiIrO6 was successfully synthesized by high-pressure and high-temperature methods (8 GPa and 1573 K). Ba2NiIrO6 crystallizes in a cubic double perovskite structure (space group Fm3̅m), with an ordered arrangement of NiO6 and IrO6 octahedra. X-ray absorption near-edge spectroscopy confirms the nominal Ni(II) and Ir(VI) valence states. Ba2NiIrO6 displays an antiferromagnetic order at 51 K. The positive Weiss temperature, however, indicates that ferromagnetic interactions are dominant. Isothermal magnetization curves at low temperatures support a field-induced spin-flop transition.A palladium-catalyzed asymmetric Markovnikov hydroaminocarbonylation of alkenes with anilines has been developed for the atom-economical synthesis of 2-substituted propanamides bearing an α-stereocenter. A novel phosphoramidite ligand L16 was discovered which exhibited very high reactivity and selectivity in the reaction. This asymmetric Markovnikov hydroaminocarbonylation employs readily available starting materials and tolerates a wide range of functional groups, thus providing a facile and straightforward method for the regio- and enantioselective synthesis of 2-substituted propanamides under ambient conditions. Mechanistic studies revealed that the reaction proceeds through a palladium hydride pathway.De novo protein design offers the opportunity to test our understanding of how metalloproteins perform difficult transformations. Attaining high-resolution structural information is critical to understanding how such designs function. There have been many successes in the design of porphyrin-binding proteins; however, crystallographic characterization has been elusive, limiting what can be learned from such studies as well as the extension to new functions. Moreover, formation of highly oxidizing high-valent intermediates poses design challenges that have not been previously implemented (1) purposeful design of substrate/oxidant access to the binding site and (2) limiting deleterious oxidation of the protein scaffold. Here we report the first crystallographically characterized porphyrin-binding protein that was programmed to not only bind a synthetic Mn-porphyrin but also maintain binding site access to form high-valent oxidation states. We explicitly designed a binding site with accessibility to dioxygen units in the open coordination site of the Mn center. In solution, the protein is capable of accessing a high-valent Mn(V)-oxo species which can transfer an O atom to a thioether substrate. The crystallographic structure is within 0.6 Å of the design and indeed contained an aquo ligand with a second water molecule stabilized by hydrogen bonding to a Gln side chain in the active site, offering a structural explanation for the observed reactivity.Microporous silica membranes have shown promise as potential candidates for energy-efficient chemical separation. Herein, we report the ultrafast synthesis of silica membranes, on the order of minutes, in atmospheric-pressure, low-temperature plasma. Direct deposition in the discharge region of atmospheric-pressure plasma enables the immediate formation of a thin silica layer on a porous substrate. The plasma-deposited layer had a thickness of ∼13 nm and was confined to the immediate surface of the substrate. With an increase in deposition temperature, we observed an increase in the inorganic nature of the plasma-deposited layer and simultaneous improvement in the membrane performance. Consequently, the resulting membranes exhibited outstanding permeance for small-sized gas molecules, such as H2 (>10-6 mol m-2 s-1 Pa-1), with a high H2/SF6 permeance ratio of ∼6300, providing a nonthermal alternative for the fabrication of silica-based membranes.De novo construction of loop regions is an important problem in computational structural biology. Compared to regions with well-defined secondary structure, loops tend to exhibit significant conformational heterogeneity. As a result, their structures are often ambiguous when determined using experimental data obtained by crystallography, cryo-EM, or NMR. Although structurally diverse models could provide a more relevant representation of proteins in their native states, obtaining large numbers of biophysically realistic and physiologically relevant loop conformations is a resource-consuming task. To address this need, we developed a novel loop construction algorithm, Hash/RCD, that combines knowledge-based conformational hashing with random coordinate descent (RCD). This hybrid approach achieved a closure rate of 100% on a benchmark set of 195 loops in 29 proteins that range from 3 to 31 residues. More importantly, the use of templates allows Hash/RCD to maintain the accuracy of state-of-the-art coordinate descent methods while reducing sampling time from over 400 to 141 ms. These results highlight how the integration of coordinate descent with knowledge-based sampling overcomes barriers inherent to either approach in isolation. This method may facilitate the identification of native-like loop conformations using experimental data or full-atom scoring functions by allowing rapid sampling of large numbers of loops. In this manuscript, we investigate and discuss the advantages, bottlenecks, and limitations of combining conformational hashing with RCD. By providing a detailed technical description of the Hash/RCD algorithm, we hope to facilitate its implementation by other researchers.We report a combined photocatalytic and hydrogen atom transfer (HAT) approach for the light-mediated epimerization of readily accessible piperidines to provide the more stable diastereomer with high selectivity. The generality of the transformation was explored for a large variety of di- to tetrasubstituted piperidines with aryl, alkyl, and carboxylic acid derivatives at multiple different sites. Piperidines without substitution on nitrogen as well as N-alkyl and aryl derivatives were effective epimerization substrates. PFK15 The observed diastereoselectivities correlate with the calculated relative stabilities of the isomers. Demonstration of reaction reversibility, luminescence quenching, deuterium labeling studies, and quantum yield measurements provide information about the mechanism.

Autoři článku: Danielsmollerup4788 (Mouritsen Richards)