Dammespensen9889
The strength named "social intelligence" in the Values in Action (VIA) Classification of Character Strengths and Virtues represents emotional, personal, and social intelligences, which are considered "hot intelligences". This work contributed to the study of the mechanisms of influence of social intelligence on mental health. A multiple mediation model was proposed to quantify the direct effect of social intelligence on psychopathological symptoms, as well as its indirect effect through its impact on components of subjective and psychological well-being. This study involved 1407 university students who completed the Values in Action Inventory of Strengths (VIA-IS), the Satisfaction with Life Scale (SWLS), the Positive and Negative Affect Schedule (PANAS), the Psychological Well-Being Scales (PWBS), and the Symptom Checklist-90-Revised (SCL-90-R). Social intelligence was found to be significantly associated with life satisfaction (a = 0.33, p less then 0.001), positive affect (a = 0.42, p less then 0.001), and negative affect (a = -0.21, p less then 0.001), transmitting significant indirect effects on psychopathological symptomatology through these components of subjective well-being. Temsirolimus molecular weight Likewise, social intelligence was positively and significantly related to psychological well-being (a-paths ranged from 0.31 to 0.43, p less then 0.001), exerting significant and negative indirect effects on psychological distress through the dimension of positive relations with other people. These results could be useful in order to expand the explanatory models of the influence of social intelligence on mental health and to design interventions based on this strength for the promotion of well-being and the reduction in psychological distress.Acute liver injury (ALI) causes life-threatening clinical problem, and its underlying etiology includes inflammation and apoptosis. An adenosine A2A receptor agonist, polydeoxyribonucleotide (PDRN), exhibits anti-inflammatory and anti-apoptotic effects by inhibiting the secretion of pro-inflammatory cytokines. In the current study, the protective effect of PDRN against carbon tetrachloride (CCl4)-induced ALI was investigated using mice. For the induction of ALI, mice received intraperitoneal injection of CCl4 twice over seven days. Mice from the PDRN-treated groups received an intraperitoneal injection of 200 μL saline containing PDRN (8 mg/kg), once a day for seven days, starting on day 1 after the first CCl4 injection. In order to confirm that the action of PDRN occurs through the adenosine A2A receptor, 8 mg/kg 3,7-dimethyl-1-propargylxanthine (DMPX), an adenosine A2A receptor antagonist, was treated with PDRN. Administration of CCl4 impaired liver tissue and increased the liver index and histopathologic score. The expression of pro-inflammatory cytokines was increased, and apoptosis was induced by the administration of CCl4. Administration of CCl4 activated nuclear factor-kappa B (NF-κB) and facilitated phosphorylation of signaling factors in mitogen-activated protein kinase (MAPK). In contrast, PDRN treatment suppressed the secretion of pro-inflammatory cytokines and inhibited apoptosis. PDRN treatment inactivated NF-κB and suppressed phosphorylation of signaling factors in MAPK. As a result, liver index and histopathologic score were reduced by PDRN treatment. When PDRN was treated with DMPX, the anti-inflammatory and anti-apoptotic effect of PDRN disappeared. Therefore, PDRN can be used as an effective therapeutic agent for acute liver damage.Considering the negative effect of lead (Pb) on children's neurodevelopment, Pb exposure should be minimized to the lowest extent possible, though the blood Pb (BPb) concentrations in Japanese children are among the lowest in the world. To identify the sources of Pb in blood, isotope ratios (IRs 207Pb/206Pb and 208Pb/206Pb) of Pb (PbIR) in whole blood from eight Japanese children were measured by multi-collector ICP mass spectrometry. Further, samples of house dust, soil, duplicate diet, and tobacco, collected from home environments, were also measured and were compared with PbIR of blood case by case. The relative contribution of Pb in the home environment to BPb were estimated by linear programming (finding an optimal solution which satisfy the combination of IRs and intakes from various sources) when appropriate. Source apportionment for three children could be estimated, and contributions of diet, soil, and house dust were 19-34%, 0-55%, and 20-76%, respectively. PbIR for the remaining five children also suggested that non-dietary sources also contributed to Pb exposure, though quantitative contributions could not be estimated. Non-dietary sources such as soil, house dust, and passive tobacco smoke are also important contributors to Pb exposure for Japanese children based on PbIR results.Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.