Damborgcrockett4817
Food frequency questionnaires (FFQs) are the most commonly selected tools in nutrition monitoring, as they are inexpensive, easily implemented and provide useful information regarding dietary intake. They are usually carefully drafted by experts from nutritional and/or medical fields and can be validated by using other dietary monitoring techniques. FFQs can get very extensive, which could indicate that some of the questions are less significant than others and could be omitted without losing too much information. In this paper, machine learning is used to explore how reducing the number of questions affects the predicted nutrient values and diet quality score. The paper addresses the problem of removing redundant questions and finding the best subset of questions in the Extended Short Form Food Frequency Questionnaire (ESFFFQ), developed as part of the H2020 project WellCo. Eight common machine-learning algorithms were compared on different subsets of questions by using the PROMETHEE method, which compares methods and subsets via multiple performance measures. According to the results, for some of the targets, specifically sugar intake, fiber intake and protein intake, a smaller subset of questions are sufficient to predict diet quality scores. Additionally, for smaller subsets of questions, machine-learning algorithms generally perform better than statistical methods for predicting intake and diet quality scores. The proposed method could therefore be useful for finding the most informative subsets of questions in other FFQs as well. This could help experts develop FFQs that provide the necessary information and are not overbearing for those answering.Until recently, it was thought that maximal oxygen uptake (VO2max) was elicited only in middle-distance events and not the sprint or marathon distances. We tested the hypothesis that VO2max can be elicited in both the sprint and marathon distances and that the fraction of time spent at VO2max is not significantly different between distances.
Seventy-eight well-trained males (mean [SD] age 32 [13]; weight 73 [9] kg; height 1.80 [0.8] m) performed the University of Montreal Track Test using a portable respiratory gas sampling system to measure a baseline VO
. Each participant ran one or two different distances (100 m, 200 m, 800 m, 1500 m, 3000 m, 10 km or marathon) in which they are specialists.
VO
was elicited and sustained in all distances tested. The time limit (Tlim) at VO
on a relative scale of the total time (Tlim at VO
%Ttot) during the sprint, middle-distance, and 1500 m was not significantly different (
> 0.05). The relevant time spent at VO
was only a factor for performance in the 3000 m group, where the Tlim at VO
%Ttot was the highest (51.4 [18.3], r = 0.86,
= 0.003).
By focusing on the solicitation of VO
, we demonstrated that the maintenance of VO
is possible in the sprint, middle, and marathon distances.
By focusing on the solicitation of VO2max, we demonstrated that the maintenance of VO2max is possible in the sprint, middle, and marathon distances.Microsatellites or simple sequence repeats (SSRs) are popular co-dominant markers that play an important role in crop improvement. To enhance genomic resources in general horticulture, we identified SSRs in the genomes of eight citrus species and characterized their frequency and distribution in different genomic regions. Citrus is the world's most widely cultivated fruit crop. We have implemented a microsatellite database, citSATdb, having the highest number (~1,296,500) of putative SSR markers from the genus Citrus, represented by eight species. The database is based on a three-tier approach using MySQL, PHP, and Apache. The markers can be searched using multiple search parameters including chromosome/scaffold number(s), motif types, repeat nucleotides (1-6), SSR length, patterns of repeat motifs and chromosome/scaffold location. The cross-species transferability of selected markers can be checked using e-PCR. Further, the markers can be visualized using the Jbrowse feature. These markers can be used for distinctness, uniformity, and stability (DUS) tests of variety identification, marker-assisted selection (MAS), gene discovery, QTL mapping, and germplasm characterization. click here citSATdb represents a comprehensive source of markers for developing/implementing new approaches for molecular breeding, required to enhance Citrus productivity. The potential polymorphic SSR markers identified by cross-species transferability could be used for genetic diversity and population distinction in other species.Lignohumate, as an industrially produced analog of natural humic substances, is studied from the point of view of its diffusion properties. This work focuses on its permeation ability, important in agricultural and horticultural applications, connected with its penetration into plant organs as leaves and roots. The hydrogel based on agarose was used as a model material for the diffusion of lignohumate. Two types of experiments were realized the diffusion of lignohumate in the hydrogel diffusion couple and the diffusion of lignohumate from its solution into hydrogel. The diffusion coefficient of lignohumate in the hydrogel was determined and used for the modelling of the time development of concentration profiles. It was found that the model agrees with experimental data for short times but an accumulation of lignohumate in front of the interface between donor and acceptor hydrogels was observed after several days. The particle size distribution of lignohumate and changes in the E4/E6 ratio used as an indicator of molecular weight of humic substances were determined. The results showed that the supramolecular structure of lignohumate can react sensitively to actual changes in its environs and thus affect their mobility and permeability into different materials. A filtration effect at the interface can be observed as an accompanying phenomenon of the re-arrangement in the lignohumate secondary structure.Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.