Dalytobiasen6439

Z Iurium Wiki

Published by BMJ.INTRODUCTION This study estimated the prevalence of spirometry-defined airflow obstruction and coal workers' pneumoconiosis (CWP) among never-smoking coal miners participating in the National Institute for Occupational Safety and Health (NIOSH) Coal Workers' Health Surveillance Program (CWHSP). METHODS Data were from working miners screened by a CWHSP mobile unit who had valid spirometry and chest radiography results. Spirometry-defined airflow obstruction was determined when the ratio of forced expiratory volume in the first second to forced vital capacity is less than the lower limit of normal. Chest radiographs were classified according to the International Labour Office system to identify pneumoconiosis, including the most severe form of pneumoconiosis, progressive massive fibrosis (PMF). RESULTS Prevalence of airflow obstruction among never-smoking coal miners in this sample was 7.7% overall, 16.4% among miners with CWP and 32.3% among miners with PMF. Airflow obstruction was significantly associated with CWP and PMF. CONCLUSIONS There was a higher prevalence of airflow obstruction among never-smoking coal miners with pneumoconiosis compared with those without pneumoconiosis. These findings support prior research on airflow obstruction and smoking and show pneumoconiosis might present with an obstructive pattern regardless of smoking status. © Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.Assessment of the compressibility of marine mammal airways at depth is crucial to understanding vital physiological processes such as gas exchange during diving. Very few studies have directly assessed changes in cetacean and pinniped tracheobronchial shape, and none have quantified changes in volume with increasing pressure. A harbor seal, gray seal, harp seal, harbor porpoise and common dolphin were imaged promptly post mortem via computed tomography in a radiolucent hyperbaric chamber. Volume reconstructions were performed of segments of the trachea and bronchi of the pinnipeds and bronchi of the cetaceans for each pressure treatment. All specimens examined demonstrated significant decreases in airway volume with increasing pressure, with those of the harbor seal and common dolphin nearing complete collapse at the highest pressures. The common dolphin bronchi demonstrated distinctly different compression dynamics between 50% and 100% lung inflation treatments, indicating the importance of air in maintaining patent airways, and collapse occurred caudally to cranially in the 50% treatment. Dynamics of the harbor seal and gray seal airways indicated that the trachea was less compliant than the bronchi. These findings indicate potential species-specific variability in airway compliance, and cessation of gas exchange may occur at greater depths than those predicted in models assuming rigid airways. This may potentially increase the likelihood of decompression sickness in these animals during diving. © 2020. Published by The Company of Biologists Ltd.We describe air-breathing mechanics in gray tree frog tadpoles (Hyla versicolor). We found that H. versicolor tadpoles breathe by 'bubble-sucking', a breathing mode typically employed by tadpoles too small to break the water's surface tension, in which a bubble is drawn into the buccal cavity and compressed into the lungs. In most tadpoles, bubble-sucking is replaced by breach breathing (breaking the surface to access air) at larger body sizes. In contrast, H. versicolor tadpoles bubble-suck throughout the larval period, despite reaching body sizes at which breaching is possible. Hyla versicolor tadpoles exhibit two bubble-sucking behaviors 'single bubble-sucking', previously described in other tadpole species, is characterized by a single suction event followed by a compression phase to fill the lungs; 'double bubble-sucking' is a novel, apparently derived form of bubble-sucking that adds a second suction event. Hyla versicolor tadpoles transition from single bubble-sucking to double bubble-sucking at approximately 5.7 mm snout-vent length (SVL), which corresponds to a period of rapid lung maturation when they transition from low to high vascularization (6.0 mm SVL). Functional, behavioral and morphological evidence suggests that double bubble-sucking increases the efficiency of pulmonary gas exchange by separating expired, deoxygenated air from freshly inspired air to prevent mixing. Hyla versicolor, and possibly other hylid tadpoles, may have specialized for bubble-sucking in order to take advantage of this increased efficiency. Single and double bubble-sucking represent two- and four-stroke ventilation systems, which we discuss in the context of other anamniote air-breathing mechanisms. © 2020. Published by The Company of Biologists Ltd.The cardiovascular system is critical for delivering O2 to tissues. Here, we examined the cardiovascular responses to progressive hypoxia in four high-altitude Andean duck species compared with four related low-altitude populations in North America, tested at their native altitude. Ducks were exposed to stepwise decreases in inspired partial pressure of O2 while we monitored heart rate, O2 consumption rate, blood O2 saturation, haematocrit (Hct) and blood haemoglobin (Hb) concentration. We calculated O2 pulse (the product of stroke volume and the arterial-venous O2 content difference), blood O2 concentration and heart rate variability. Regardless of altitude, all eight populations maintained O2 consumption rate with minimal change in heart rate or O2 pulse, indicating that O2 consumption was maintained by either a constant arterial-venous O2 content difference (an increase in the relative O2 extracted from arterial blood) or by a combination of changes in stroke volume and the arterial-venous O2 content difference. Three high-altitude taxa (yellow-billed pintails, cinnamon teal and speckled teal) had higher Hct and Hb concentration, increasing the O2 content of arterial blood, and potentially providing a greater reserve for enhancing O2 delivery during hypoxia. Hct and Hb concentration between low- and high-altitude populations of ruddy duck were similar, representing a potential adaptation to diving life. Heart rate variability was generally lower in high-altitude ducks, concurrent with similar or lower heart rates than low-altitude ducks, suggesting a reduction in vagal and sympathetic tone. These unique features of the Andean ducks differ from previous observations in both Andean geese and bar-headed geese, neither of which exhibit significant elevations in Hct or Hb concentration compared with their low-altitude relatives, revealing yet another avian strategy for coping with high altitude. © 2020. Published by The Company of Biologists Ltd.Mass-specific metabolic rate negatively co-varies with body mass from the whole-animal to the mitochondrial levels. Mitochondria are the mainly consumers of oxygen inspired by mammals to generate ATP or compensate for energetic losses dissipated as the form of heat (proton leak) during oxidative phosphorylation. Consequently, ATP synthesis and proton leak compete for the same electrochemical gradient. Because proton leak co-varies negatively with body mass, it is unknown whether extremely small mammals further decouple their mitochondria to maintain their body temperature or whether they implement metabolic innovations to ensure cellular homeostasis. The present study investigated the impact of body mass variation on cellular and mitochondrial functioning in small mammals, comparing two extremely small African pygmy mice (Mus mattheyi, ∼5 g, and Mus minutoides, ∼7 g) with the larger house mouse (Mus musculus, ∼22 g). Oxygen consumption rates were measured from the animal to the mitochondrial levels. We also measured mitochondrial ATP synthesis in order to appreciate the mitochondrial efficiency (ATP/O). At the whole-animal scale, mass- and surface-specific metabolic rates co-varied negatively with body mass, whereas this was not necessarily the case at the cellular and mitochondrial levels. Mus mattheyi had generally the lowest cellular and mitochondrial fluxes, depending on the tissue considered (liver or skeletal muscle), as well as having more-efficient muscle mitochondria than the other two species. Mus mattheyi presents metabolic innovations to ensure its homeostasis, by generating more ATP per oxygen consumed. © 2020. Published by The Company of Biologists Ltd.Unsteady, dynamic flow regimes commonly found in shallow marine ecosystems such as coral reefs pose an energetic challenge for mobile organisms that typically depend on station holding for fitness-related activities. The majority of experimental studies, however, have measured energetic costs of locomotion at steady speeds, with only a few studies measuring the effects of oscillatory flows. In this study, we used a bidirectional swimming respirometer to create six oscillatory water flow regimes consisting of three frequency and amplitude combinations for both unidirectional and bidirectional oscillatory flows. Using the goldring surgeonfish, Ctenochaetus strigosus, a pectoral-fin (labriform) swimmer, we quantified the net cost of swimming (swimming metabolic rate minus standard metabolic rate) associated with station-holding under these various conditions. We determined that the swimming costs of station-holding in the bidirectional flow regime increased by 2-fold compared with costs based on swimming over the same range velocities at steady speeds. Furthermore, as we found minimal differences in energetic costs associated with station-holding in the unidirectional, oscillating-flow compared with that predicted from steady swimming costs, we conclude that the added acceleration costs are minimal, while the act of turning is an energetically expensive endeavor for this reef fish species. © 2020. Published by The Company of Biologists Ltd.Several evidences have suggested the ability of radiofrequency electromagnetic fields to influence biological systems, even if the action mechanisms are not well understood. There are few data on the effect of radiofrequency electromagnetic fields on self-renewal of neural progenitor cells. A particular glial type that shows characteristics of stem cells is olfactory ensheathing cells (OECs). Herein, we assessed the non-thermal effects induced on OECs through radiofrequency electromagnetic fields changing the envelope of the electromagnetic wave. Primary OEC cultures were exposed to continuous or amplitude-modulated 900 MHz electromagnetic fields, in the far-field condition and at different exposure times (10, 15, 20 min). this website The expression of OEC markers (S-100 and nestin), cytoskeletal proteins (GFAP and vimentin), apoptotic pathway activation by caspase-3 cleavage and cell viability were evaluated. Our results highlight that 20 min of exposure to continuous or amplitude-modulated 900 MHz electromagnetic fields induced a different and significant decrease in cell viability. In addition, according to the electromagnetic field waveform, diverse dynamic changes in the expression of the analysed markers in OECs and activation of the apoptotic pathway were observed. The data suggest that radiofrequency electromagnetic fields might play different and important roles in the self-renewal of OEC stem cells, which are involved in nervous system repair. © 2020. Published by The Company of Biologists Ltd.

Autoři článku: Dalytobiasen6439 (Crowley Rouse)