Daltonkondrup3594
The development of a biocomposite polymeric system for the antibacterial coating of polypropylene mesh materials for hernia repair is reported. Coatings were constituted by a film of chitosan containing randomly dispersed poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with chlorhexidine or rifampicin. The chlorhexidine-loaded system exhibited a burst release during the first day reaching the release of the loaded drug in three or four days, whereas rifampicin was gradually released for at least 11 days. Both antibacterial coated meshes were highly active against Staphylococcus aureus and Staphylococcus epidermidis (106 CFU/mL), displaying zones of inhibition that lasted for 7 days (chlorhexidine) or 14 days (rifampicin). Apparently, both systems inhibited bacterial growth in the surrounding environment, as well as avoided bacterial adhesion to the mesh surface. These polymeric coatings loaded with biodegradable nanoparticles containing antimicrobials effectively precluded bacterial colonization of the biomaterial. Both biocomposites showed adequate performance and thus could have potential application in the design of antimicrobial coatings for the prophylactic coating of polypropylene materials for hernia repair.
Various surface treatments have been tested for titanium implants aiming at increasing their surface biocompatibility and their biological characteristics, but also the efficiency of the implant surface will have to be improved to drastically decrease peri-implantite and mucosite. In fact, the peri-implantitis and peri-implant mucositis have a high incidence in clinical practice. The nanofabrication techniques that offer the possibility to achieve the implant surface that reduces bacterial colonization could influence the osteointegration. The aim of this research was to evaluate the bone response to titanium implants coated with a bifunctional molecule with antimicrobic activity consisting of a combination of silver ions covalently bound to titanium dioxide nanoparticles.
A total of 36 implants were inserted into 18 older New Zealand white male rabbits. They had two different surfaces. The implants Control group was characterized by an acid-etched and sandblasted surface treatment, and the Test implants n the bone tissue in a rabbit model. These facts suggest possible clinical applications for the silver composition.
Titanium implants coated with the silver-anatase solution bind very well to the bone and did not have an adverse effect on the bone tissue in a rabbit model. These facts suggest possible clinical applications for the silver composition.Current plant-based yogurts are made by the fermentation of plant-based milks. Although this imparts fermented flavors and probiotic cultures, the process is relatively longer and often leads to textural issues. The protein content of these plant-based yogurts is also lower than their dairy counterparts. To overcome these challenges, this paper explores the high pressure processing (HPP) of plant protein ingredients as an alternative structuring strategy for plant-based yogurts. Using mung bean (MB), chickpea (CP), pea (PP), lentil (LP), and faba bean (FB) proteins as examples, this work compared the viscosity and viscoelastic properties of high pressure-structured (600 MPa, 5 min, 5 °C) 12% (w/w) plant protein gels without, and with 5% (w/w) sunflower oil (SO) to commercial plain skim and whole milk Greek yogurts and discussed the feasibility of using HPP to develop plant-based yogurts. HPP formed viscoelastic gels (G' > G) for all plant protein samples with comparable gel strength (G'~102-103 Pa; tan δ~0.2-0.3) to commercial dairy yogurts. The plant protein gel strength decreased in the order CP~CPSO~LP~LPSO > MBSO~PPSO~FB~FBSO > PP > MB. Modest addition of sunflower oil led to little change in viscoelastic properties for all plant protein samples except for MB and PP, where gel strength increased with incorporated oil. The emulsion gels were also more viscous than the hydrogels. Nonetheless, the viscosity of the plant protein gels was similar to the dairy yogurts. Finally, a process involving separate biotransformation for optimized flavor production and high pressure processing for consistent texture generation was proposed. This could lead to high protein plant-based yogurt products with desirable texture, flavor, and nutrition.Salmonella enterica subspecies enterica serotype Hessarek (Salmonella Hessarek) is considered a serovar with high host specificity and is an uncommon cause of disease in humans; no cases of S. Hessarek bacteremia have been reported in humans to date. On 16 July 2019, a young male presented abdominal pain, vomit, diarrhea, and fever up to 41 °C, a few hours after a kebab meal containing goat meat; he went to the Emergency Room, where a Film Array® GI Panel (BioFire, Biomerieux Company, Marcy-L´Étoile, France) was performed on his feces and results were positive for Salmonella. The culture of the feces was negative, but the blood culture was positive for Salmonella spp., which was identified as Salmonella Hessarek by seroagglutination assays. The patient was treated with ceftriaxone 2 g intravenously qd for 8 days; he was discharged in good general conditions, and ciprofloxacin 500 mg per os bid for 7 more days was prescribed, after exclusion of endocarditis and of clinical signs of complicated bacteremia. This case of Salmonella Hessarek gastroenteritis with bacteremia is probably the first case of bloodstream human infection due to this agent ever described. Further studies are needed to ascertain the global burden of S. Hessarek disease in humans.Members of Sphingomonas genus have gained a notable interest for their use in a wide range of biotechnological applications, ranging from bioremediation to the production of valuable compounds of industrial interest. To date, knowledge on phages targeting Sphingomonas spp. are still scarce. Here, we describe and characterize a lytic bacteriophage, named vB_StuS_MMDA13, able to infect the Sphingomonas turrisvirgatae MCT13 type strain. Physiological characterization demonstrated that vB_StuS_MMDA13 has a narrow host range, a long latency period, a low burst size, and it is overall stable to both temperature and pH variations. The phage has a double-stranded DNA genome of 63,743 bp, with 89 open reading frames arranged in two opposite arms separated by a 1186 bp non-coding region and shows a very low global similarity to any other known phages. Interestingly, vB_StuS_MMDA13 is endowed with an original nucleotide modification biosynthetic gene cluster, which greatly differs from those of its most closely related phages of the Nipunavirus genus. vB_StuS_MMDA13 is the first characterized lytic bacteriophage of the Siphoviridae family infecting members of the Sphingomonas genus.Environmental DNA (eDNA) has been proposed as a powerful tool to detect and monitor cryptic, elusive, or invasive organisms. We recently demonstrated that honey constitutes an easily accessible source of eDNA. In this study, we extracted DNA from 102 honey samples (74 from Italy and 28 from 17 other countries of all continents) and tested the presence of DNA of nine honey bee pathogens and parasites (Paenibacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Ascosphaera apis,Lotmaria passim, Acarapis woodi, Varroa destructor, and Tropilaelaps spp.) using qualitative PCR assays. All honey samples contained DNA from V. destructor, confirming the widespread diffusion of this mite. None of the samples gave positive amplifications for N. apis, A. woodi, and Tropilaelaps spp. M. plutonius was detected in 87% of the samples, whereas the other pathogens were detected in 43% to 57% of all samples. The frequency of Italian samples positive for P. larvae was significantly lower (49%) than in all other countries (79%). The co-occurrence of positive samples for L. passim and A. apis with N. ceranae was significant. This study demonstrated that honey eDNA can be useful to establish monitoring tools to evaluate the sanitary status of honey bee populations.This paper analyses the semi-industrial process of spray drying chokeberry juice with carbohydrate polymers used as a carrier. Tapioca dextrin (Dx) was proposed and tested as an alternative carrier and it was compared with maltodextrin carriers (MDx), which are the most common in industrial practice. The influence of selected process parameters (carrier type and content, inlet air temperature, atomiser speed) on the characteristics of dried chokeberry powder was investigated. The size and microstructure of the powder particles, the bulk and apparent density, porosity, flowability, yield and bioactive properties were analysed. 1-Deoxynojirimycin modulator In comparison with MDx, the Dx carrier improved the handling properties, yield and bioactive properties. An increase in the Dx carrier content improved the phenolic content, antioxidant capacity, flowability and resulted in greater yield of the powder. An increase in the drying temperature increased the size of particles and improved powder flowability but it also caused a greater loss of the phenolic content and antioxidant capacity. The rotary atomizer speed had the most significant effect on the bioactive properties of obtained powders, which increased along with its growth. The following conditions were the most favourable for chokeberry juice with tapioca dextrin (Dx) as the carrier inlet air temperature, 160 °C; rotary atomizer speed, 15,000 rpm; and Dx carrier content, 60%.Current demand for new protective materials ensuring sterility is systematically growing. The purpose of this work was the synthesis of the biocidal N-halamine hydantoin-containing chitosan (CS-CMH-Cl) and characterization of its properties. The functionalization of the chitosan by 5-hydantoinacetic acid substitution leads to obtaining the CS-CMH polymer, which was chlorinated in next step to transform N-H into N-Cl bonds. In this study, the possibility of forming two biocidal N-Cl bonds in hydantoin ring, grafted onto chitosan chains, was proved. The structure and stability of the prepared material was confirmed by spectroscopic (FTIR, NMR, colorimetric test) and microscopic analyses (SEM, AFM). Surface properties were investigated based on contact-angle measurements. In addition, the thermal and photochemical stability of the obtained samples were determined as functional features, determining the range of potential use. It was found that both modified chitosan polymers (CS-CMH and CS-CMH-Cl) were characterized by the smaller thermal stability and more hydrophilic and rougher surface than unmodified CS. Photooxidative degradation of the obtained materials was observed mainly on the sample surface. After irradiation, the surfaces became more hydrophilic-especially in the case of the CS-CMH-Cl-which is advantageous from the point of view of the antibacterial properties. Antibacterial tests against S. aureus and E. coli confirmed the antibacterial activities of received CS-CMH-Cl material.Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being critically involved in fibrinolysis and wound healing, emerging evidence indicates that PAI-1 plays an important role in many diseases, including cardiovascular disease, tissue fibrosis, and cancer. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1 related pathologies. Despite ongoing efforts no PAI-1 inhibitors were approved to date for therapeutic use in humans. A better understanding of the molecular mechanisms of PAI-1 inhibition is therefore necessary to guide the rational design of PAI-1 modulators. Here, we present a 1.9 Å crystal structure of PAI-1 in complex with an inhibitory nanobody VHH-s-a93 (Nb93). Structural analysis in combination with biochemical characterization reveals that Nb93 directly interferes with PAI-1/PA complex formation and stabilizes the active conformation of the PAI-1 molecule.