Dalsgaardhooper0282

Z Iurium Wiki

Does president Trump's use of Twitter affect financial markets? The president frequently mentions companies in his tweets and, as such, tries to gain leverage over their behavior. We analyze the effect of president Trump's Twitter messages that specifically mention a company name on its stock market returns. ICEC0942 in vivo We find that tweets from the president which reveal strong negative sentiment are followed by reduced market value of the company mentioned, whereas supportive tweets do not render a significant effect. Our methodology does not allow us to conclude about the exact mechanism behind these findings and can only be used to investigate short-term effects.Anticarsia gemmatalis (Hübner, 1818) and Chrysodeixis includens (Walker, 1858) are species of Lepidoptera that cause great damages in the soybean plantations of Brazil. Despite the importance they have in this regard, there are no studies on the chromosomal organization of these species and recently, A. gemmatalis, which belonged to the Noctuidae family, was allocated to the Erebidae family. Therefore, the objective of this paper was to analyze, through conventional and molecular cytogenetic markers, both species of Lepidoptera. A 2n = 62 was observed, with ZZ/ZW sex chromosome system and holokinetic chromosomes for both species. There was homogeneity in the number of 18S rDNA sites for both species. However, variations in heterochromatin distribution were observed between both species. The cytogenetic analyses enabled separation of the species, corroborating the transference of A. gemmatalis, from the family Noctuidae to the family Erebidae, suggesting new cytotaxonomic characteristics.The Wnt/β-catenin signaling pathway has been implicated in human proliferative diseases such as cancer and fibrosis. The functions of β-catenin and several other components of this pathway have been investigated in fibrosis. However, the potential role of R-spondin proteins (RSPOs), enhancers of the Wnt/β-catenin signaling, has not been described. A specific interventional strategy targeting this pathway for fibrosis remains to be defined. We developed monoclonal antibodies against members of the RSPO family (RSPO1, 2, and 3) and probed their potential function in fibrosis in vivo. We demonstrated that RSPO3 plays a critical role in the development of fibrosis in multiple organs. Specifically, an anti-RSPO3 antibody, OMP-131R10, when dosed therapeutically, attenuated fibrosis in carbon tetrachloride (CCl4)-induced liver fibrosis, bleomycin-induced pulmonary and skin fibrosis models. Mechanistically, we showed that RSPO3 induces multiple pro-fibrotic chemokines and cytokines in Kupffer cells and hepatocytes. We found that the anti-fibrotic activity of OMP-131R10 is associated with its inhibition of β-catenin activation in vivo. Finally, RSPO3 was found to be highly elevated in the active lesions of fibrotic tissues in mouse models of fibrosis and in patients with idiopathic pulmonary fibrosis (IPF) and nonalcoholic steatohepatitis (NASH). Together these data provide an anti-fibrotic strategy for targeting the Wnt/β-catenin pathway through RSPO3 blockade and support that OMP-131R10 could be an important therapeutic agent for fibrosis.Using an online survey of academics at 55 randomly selected institutions across the US and Canada, we explore priorities for publishing decisions and their perceived importance within review, promotion, and tenure (RPT). We find that respondents most value journal readership, while they believe their peers most value prestige and related metrics such as impact factor when submitting their work for publication. Respondents indicated that total number of publications, number of publications per year, and journal name recognition were the most valued factors in RPT. Older and tenured respondents (most likely to serve on RPT committees) were less likely to value journal prestige and metrics for publishing, while untenured respondents were more likely to value these factors. These results suggest disconnects between what academics value versus what they think their peers value, and between the importance of journal prestige and metrics for tenured versus untenured faculty in publishing and RPT perceptions.Nowcasting of precipitation is a difficult spatiotemporal task because of the non-uniform characterization of meteorological structures over time. Recently, convolutional LSTM has been shown to be successful in solving various complex spatiotemporal based problems. In this research, we propose a novel precipitation nowcasting architecture 'Convcast' to predict various short-term precipitation events using satellite data. We train Convcast with ten consecutive NASA's IMERG precipitation data sets each at intervals of 30 minutes. We use the trained neural network model to predict the eleventh precipitation data of the corresponding ten precipitation sequence. Subsequently, the predicted precipitation data are used iteratively for precipitation nowcasting of up to 150 minutes lead time. Convcast achieves an overall accuracy of 0.93 with an RMSE of 0.805 mm/h for 30 minutes lead time, and an overall accuracy of 0.87 with an RMSE of 1.389 mm/h for 150 minutes lead time. Experiments on the test dataset demonstrate that Convcast consistently outperforms other state-of-the-art optical flow based nowcasting algorithms. Results from this research can be used for nowcasting of weather events from satellite data as well as for future on-board processing of precipitation data.To facilitate precise and convenient control of biological sample temperature, we developed a low-cost device that can be used independently or with any stereomicroscope. The purpose of the device is to control the thermal environment during experimental intervals in which a specimen must be manipulated outside of an incubator, e.g. for dissection or slide-mounting in preparation for imaging. Sample temperatures can be both cooled to below and heated to above room temperatures, and stably maintained at a precision of +/- 0.1˚C. To demonstrate the utility of this device, we report improved characterization of the penetrance of a short-acting temperature-sensitive allele in C. elegans embryos, and identification of the upper temperature threshold for embryonic viability for six Caenorhabditis species. By controlling the temperature environment even as a specimen is manipulated, this device offers consistency and flexibility, reduces environmental noise, and enables precision timing in experiments requiring temperature shifts.

Autoři článku: Dalsgaardhooper0282 (Houghton Coble)