Dalrympleheath3143
Muqubilin, negombatoperoxide B, and negombatoperoxide C/D were synthesized through enantioselective routes, with the quaternary center derived from a peroxy chiral building block of known absolute configuration. The C-2/C-3 stereogenic centers were introduced by asymmetric aldol condensation, and the 1,2-dioxane ring was constructed via an intramolecular alkylation of a hydroperoxide with a mesylate. The synthetic samples showed physical and spectroscopic data consistent with those reported in the literature and thus verified the configurations of the natural products. A potentially more expeditious enantioselective entry to the 1,2-dioxane-aldol moiety (C-1 to C-6) of such cyclic peroxides was also briefly explored, where the C-2/C-3 stereogenic centers were installed through a [2+2] cycloaddition and the 1,2-dioxane ring was closed via an intramolecular alkylation coupled with an alkyl-oxygen cleavage of a β-lactone.Relative rates for the Lewis base-mediated acylation of secondary and primary alcohols carrying large aromatic side chains with anhydrides differing in size and electronic structure have been measured. While primary alcohols react faster than secondary ones in transformations with monosubstituted benzoic anhydride derivatives, relative reactivities are inverted in reactions with sterically biased 1-naphthyl anhydrides. Further analysis of reaction rates shows that increasing substrate size leads to an actual acceleration of the acylation process, the effect being larger for secondary as compared to primary alcohols. Computational results indicate that acylation rates are guided by noncovalent interactions (NCIs) between the catalyst ring system and the DED substituents in the alcohol and anhydride reactants. Thereby stronger NCIs are formed for secondary alcohols than for primary alcohols.Carbonates cause large uncertainties in determining the concentrations of organic carbon (OC) and elemental carbon (EC), as well as EC's light absorption characteristics, in arid locations, such as Central Asia. To investigate this influence, a comparison between acid (HCl)-treated and original total suspended particle (TSP) samples was conducted in Dushanbe, Tajikistan. According to the results, the OC and EC concentrations were overestimated by approximately 22.8 ± 33.8 and 32.5 ± 33.5%, with the actual values being 11.9 ± 3.0 and 5.13 ± 2.24 μg m-3, respectively. It was found that carbonates had a larger influence from May to October than during the other months, which was significantly correlated with the amount of TSPs on the filter. Furthermore, the mass absorption cross-section of EC (MACEC) increased from 4.52 ± 1.32 to 6.02 ± 1.49 m2 g-1; this indicated that carbonates can significantly decrease MACEC, thus causing an underestimation of approximately 23.9 ± 16.7%. This is the first study that quantifies the influence of carbonates on the light-absorbing abilities of EC.Multifunctionalized indole derivatives were prepared by reducing azoarenes in the presence of ketones and bis(neopentylglycolato)diboron (B2nep2) with a catalytic amount of 4,4'-bipyridyl under neutral reaction conditions, where 4,4'-bipyridyl acted as an organocatalyst to activate the B-B bond of B2nep2 and form N,N'-diboryl-1,2-diarylhydrazines as key intermediates. Further reaction of N,N'-diboryl-1,2-diarylhydrazines with ketones afforded N-vinyl-1,2-diarylhydrazines, which rearranged to the corresponding indoles via the Fischer indole mechanism. This organocatalytic system was applied to diverse alkyl cyclic ketones, dialkyl, and alkyl/aryl ketones, including heteroatoms. Methyl alkyl ketones gave the corresponding 2-methyl-3-substituted indoles in a regioselective manner. This protocol allowed us to expand the preparation of indoles having high compatibility with not only electron-donating and electron-withdrawing groups but also N- and O-protecting functional groups.The polarizable CL&Pol force field presented in our previous study, Transferable, Polarizable Force Field for Ionic Liquids (J. Chem. Theory Comput.2019,15, 5858, DOI http//doi.org/10.1021/acs.jctc.9b0068910.1021/acs.jctc.9b00689), is extended to electrolytes, protic ionic liquids (PIL), deep eutectic solvents (DES), and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies (TT) function to dampen, or smear, the interactions between charges and induced dipole at a short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a PIL, for which the literature contains conflicting views. We describe the implementation of the TT damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics (MD) and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS MD code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The fragment-based approach of CL&Pol will allow ready extension to a wide variety of PILs, DES, and electrolytes.Developing and optimizing small-molecule biosensors is a central goal of synthetic biology. Here we incorporate additional cellular components to improve biosensor sensitivity by preventing target molecules from diffusing out of cells. We demonstrate that trapping erythromycin within Escherichia coli through phosphorylation increases the sensitivity of its biosensor (MphR) by approximately 10-fold. When combined with prior engineering efforts, our optimized biosensor can detect erythromycin concentrations as low as 13 nM. check details We show that this strategy works with a range of macrolide substrates, enabling the potential usage of our optimized system for drug development and metabolic engineering. This strategy can be extended in future studies to improve the sensitivity of other biosensors. Our findings further suggest that many naturally evolved genes involved in resistance to multiple classes of antibiotics may increase intracellular drug concentrations to modulate their own expression, acting as a form of regulatory feedback.